Cargando…

Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data

Conspiracy theories in social networks are considered to have adverse effects on individuals’ compliance with public health measures in the context of a pandemic situation. A deeper understanding of how conspiracy theories propagate through social networks is critical for the development of counterm...

Descripción completa

Detalles Bibliográficos
Autores principales: Kauk, Julian, Kreysa, Helene, Schweinberger, Stefan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360523/
https://www.ncbi.nlm.nih.gov/pubmed/34383860
http://dx.doi.org/10.1371/journal.pone.0256179
_version_ 1783737759968526336
author Kauk, Julian
Kreysa, Helene
Schweinberger, Stefan R.
author_facet Kauk, Julian
Kreysa, Helene
Schweinberger, Stefan R.
author_sort Kauk, Julian
collection PubMed
description Conspiracy theories in social networks are considered to have adverse effects on individuals’ compliance with public health measures in the context of a pandemic situation. A deeper understanding of how conspiracy theories propagate through social networks is critical for the development of countermeasures. The present work focuses on a novel approach to characterize the propagation of conspiracy theories through social networks by applying epidemiological models to Twitter data. A Twitter dataset was searched for tweets containing hashtags indicating belief in the “5GCoronavirus” conspiracy theory, which states that the COVID-19 pandemic is a result of, or enhanced by, the enrollment of the 5G mobile network. Despite the absence of any scientific evidence, the “5GCoronavirus” conspiracy theory propagated rapidly through Twitter, beginning at the end of January, followed by a peak at the beginning of April, and ceasing/disappearing approximately at the end of June 2020. An epidemic SIR (Susceptible-Infected-Removed) model was fitted to this time series with acceptable model fit, indicating parallels between the propagation of conspiracy theories in social networks and infectious diseases. Extended SIR models were used to simulate the effects that two specific countermeasures, fact-checking and tweet-deletion, could have had on the propagation of the conspiracy theory. Our simulations indicate that fact-checking is an effective mechanism in an early stage of conspiracy theory diffusion, while tweet-deletion shows only moderate efficacy but is less time-sensitive. More generally, an early response is critical to gain control over the spread of conspiracy theories through social networks. We conclude that an early response combined with strong fact-checking and a moderate level of deletion of problematic posts is a promising strategy to fight conspiracy theories in social networks. Results are discussed with respect to their theoretical validity and generalizability.
format Online
Article
Text
id pubmed-8360523
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-83605232021-08-13 Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data Kauk, Julian Kreysa, Helene Schweinberger, Stefan R. PLoS One Research Article Conspiracy theories in social networks are considered to have adverse effects on individuals’ compliance with public health measures in the context of a pandemic situation. A deeper understanding of how conspiracy theories propagate through social networks is critical for the development of countermeasures. The present work focuses on a novel approach to characterize the propagation of conspiracy theories through social networks by applying epidemiological models to Twitter data. A Twitter dataset was searched for tweets containing hashtags indicating belief in the “5GCoronavirus” conspiracy theory, which states that the COVID-19 pandemic is a result of, or enhanced by, the enrollment of the 5G mobile network. Despite the absence of any scientific evidence, the “5GCoronavirus” conspiracy theory propagated rapidly through Twitter, beginning at the end of January, followed by a peak at the beginning of April, and ceasing/disappearing approximately at the end of June 2020. An epidemic SIR (Susceptible-Infected-Removed) model was fitted to this time series with acceptable model fit, indicating parallels between the propagation of conspiracy theories in social networks and infectious diseases. Extended SIR models were used to simulate the effects that two specific countermeasures, fact-checking and tweet-deletion, could have had on the propagation of the conspiracy theory. Our simulations indicate that fact-checking is an effective mechanism in an early stage of conspiracy theory diffusion, while tweet-deletion shows only moderate efficacy but is less time-sensitive. More generally, an early response is critical to gain control over the spread of conspiracy theories through social networks. We conclude that an early response combined with strong fact-checking and a moderate level of deletion of problematic posts is a promising strategy to fight conspiracy theories in social networks. Results are discussed with respect to their theoretical validity and generalizability. Public Library of Science 2021-08-12 /pmc/articles/PMC8360523/ /pubmed/34383860 http://dx.doi.org/10.1371/journal.pone.0256179 Text en © 2021 Kauk et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kauk, Julian
Kreysa, Helene
Schweinberger, Stefan R.
Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data
title Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data
title_full Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data
title_fullStr Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data
title_full_unstemmed Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data
title_short Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data
title_sort understanding and countering the spread of conspiracy theories in social networks: evidence from epidemiological models of twitter data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360523/
https://www.ncbi.nlm.nih.gov/pubmed/34383860
http://dx.doi.org/10.1371/journal.pone.0256179
work_keys_str_mv AT kaukjulian understandingandcounteringthespreadofconspiracytheoriesinsocialnetworksevidencefromepidemiologicalmodelsoftwitterdata
AT kreysahelene understandingandcounteringthespreadofconspiracytheoriesinsocialnetworksevidencefromepidemiologicalmodelsoftwitterdata
AT schweinbergerstefanr understandingandcounteringthespreadofconspiracytheoriesinsocialnetworksevidencefromepidemiologicalmodelsoftwitterdata