Cargando…
Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results
This study aims to determine how randomly splitting a dataset into training and test sets affects the estimated performance of a machine learning model and its gap from the test performance under different conditions, using real-world brain tumor radiomics data. We conducted two classification tasks...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360533/ https://www.ncbi.nlm.nih.gov/pubmed/34383858 http://dx.doi.org/10.1371/journal.pone.0256152 |