Cargando…

Predominantly linear summation of metabotropic postsynaptic potentials follows coactivation of neurogliaform interneurons

Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurog...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozsvár, Attila, Komlósi, Gergely, Oláh, Gáspár, Baka, Judith, Molnár, Gábor, Tamás, Gábor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360660/
https://www.ncbi.nlm.nih.gov/pubmed/34308838
http://dx.doi.org/10.7554/eLife.65634
Descripción
Sumario:Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABA(A) responses and linear summation of metabotropic GABA(B) responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABA(B) receptors are simultaneously active.