Cargando…
Improving the Accuracy in Classification of Blood Pressure from Photoplethysmography Using Continuous Wavelet Transform and Deep Learning
BACKGROUND: Continuous wavelet transform (CWT) based scalogram can be used for photoplethysmography (PPG) signal transformation to classify blood pressure (BP) with deep learning. We aimed to investigate the determinants that can improve the accuracy of BP classification based on PPG and deep learni...
Autores principales: | Wu, Jiaze, Liang, Hao, Ding, Changsong, Huang, Xindi, Huang, Jianhua, Peng, Qinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360747/ https://www.ncbi.nlm.nih.gov/pubmed/34394983 http://dx.doi.org/10.1155/2021/9938584 |
Ejemplares similares
-
Cell classification by moments and continuous wavelet transform methods
por: Chen, Qian, et al.
Publicado: (2007) -
Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography
por: Sadrawi, Muammar, et al.
Publicado: (2020) -
Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring
por: Attivissimo, Filippo, et al.
Publicado: (2023) -
Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography
por: Wu, Haiyan, et al.
Publicado: (2019) -
Temporal complexity in photoplethysmography and its influence on blood pressure
por: Xing, Xiaoman, et al.
Publicado: (2023)