Cargando…
Bayesian Gene Selection Based on Pathway Information and Network-Constrained Regularization
High-throughput data make it possible to study expression levels of thousands of genes simultaneously under a particular condition. However, only few of the genes are discriminatively expressed. How to identify these biomarkers precisely is significant for disease diagnosis, prognosis, and therapy....
Autores principales: | Cao, Ming, Fan, Yue, Peng, Qinke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360753/ https://www.ncbi.nlm.nih.gov/pubmed/34394707 http://dx.doi.org/10.1155/2021/7471516 |
Ejemplares similares
-
Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information
por: Fan, Yue, et al.
Publicado: (2017) -
Reconstructing signaling pathways using regular language constrained paths
por: Wagner, Mitchell J, et al.
Publicado: (2019) -
Constrained Adjusted Maximum a Posteriori Estimation of Bayesian Network Parameters
por: Di, Ruohai, et al.
Publicado: (2021) -
An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways
por: Peng, Bin, et al.
Publicado: (2013) -
A Bayesian Approach to the Constrained MSMM
por: Roszkowski, Leszek, et al.
Publicado: (2008)