Cargando…
Machine learning using clinical data at baseline predicts the efficacy of vedolizumab at week 22 in patients with ulcerative colitis
Predicting the response of patients with ulcerative colitis (UC) to a biologic such as vedolizumab (VDZ) before administration is an unmet need for optimizing individual patient treatment. We hypothesized that the machine-learning approach with daily clinical information can be a new, promising stra...
Autores principales: | Miyoshi, Jun, Maeda, Tsubasa, Matsuoka, Katsuyoshi, Saito, Daisuke, Miyoshi, Sawako, Matsuura, Minoru, Okamoto, Susumu, Tamura, Satoshi, Hisamatsu, Tadakazu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361029/ https://www.ncbi.nlm.nih.gov/pubmed/34385588 http://dx.doi.org/10.1038/s41598-021-96019-x |
Ejemplares similares
-
Clinical response of vedolizumab at week 6 predicted endoscopic remission at week 24 in ulcerative colitis
por: Saito, Daisuke, et al.
Publicado: (2021) -
5-Aminosalicylic acid aggravates colitis mimicking exacerbation of ulcerative colitis
por: Miyoshi, Jun, et al.
Publicado: (2018) -
Safety and Effectiveness of Vedolizumab in Patients with Moderate-to-Severe Ulcerative Colitis: An Interim Analysis of a Japanese Post-Marketing Surveillance Study
por: Matsuoka, Katsuyoshi, et al.
Publicado: (2023) -
Computer-Aided Prediction of Long-Term Prognosis of Patients with Ulcerative Colitis after Cytoapheresis Therapy
por: Takayama, Tetsuro, et al.
Publicado: (2015) -
Ulcerative colitis outcomes research in Japan: protocol for an observational prospective cohort study of YOURS (YOu and Ulcerative colitis: Registry and Social network)
por: Yamazaki, Hajime, et al.
Publicado: (2019)