Cargando…
Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study
PURPOSE: Since the inception of tumor treating fields (TTFields) therapy as a Food and Drug Administration–approved treatment with known clinical efficacy against recurrent and newly diagnosed glioblastoma, various in silico modeling studies have been performed in an effort to better understand the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361065/ https://www.ncbi.nlm.nih.gov/pubmed/34409211 http://dx.doi.org/10.1016/j.adro.2021.100716 |
_version_ | 1783737880094441472 |
---|---|
author | Lok, Edwin San, Pyay White, Victoria Liang, Olivia Widick, Page C. Reddy, Sindhu Pisati Wong, Eric T. |
author_facet | Lok, Edwin San, Pyay White, Victoria Liang, Olivia Widick, Page C. Reddy, Sindhu Pisati Wong, Eric T. |
author_sort | Lok, Edwin |
collection | PubMed |
description | PURPOSE: Since the inception of tumor treating fields (TTFields) therapy as a Food and Drug Administration–approved treatment with known clinical efficacy against recurrent and newly diagnosed glioblastoma, various in silico modeling studies have been performed in an effort to better understand the distribution of applied electric fields throughout the human body for various malignancies or metastases. METHODS AND MATERIALS: Postacquisition attenuation-corrected positron emission tomography–computed tomography image data sets from 2 patients with ovarian carcinoma were used to fully segment various intrapelvic and intra-abdominal gross anatomic structures. A 3-dimensional finite element mesh model was generated and then solved for the distribution of applied electric fields, rate of energy deposition, and current density at the clinical target volumes (CTVs) and other intrapelvic and intra-abdominal structures. Electric field-volume histograms, specific absorption rate–volume histograms, and current density-volume histograms were generated, by which plan quality metrics were derived from and used to evaluate relative differences in field coverage between models under various conditions. RESULTS: TTFields therapy distribution throughout the pelvis and abdomen was largely heterogeneous, where specifically the field intensity at the CTV was heavily influenced by surrounding anatomic structures as well as its shape and location. The electric conductivity of the CTV had a direct effect on the field strength within itself, as did the position of the arrays on the surface of the pelvis and/or abdomen. CONCLUSION: The combined use of electric field-volume histograms, specific absorption rate-volume histograms, current density-volume histograms, and plan quality metrics enables a personalized method to dosimetrically evaluate patients receiving TTFields therapy for ovarian carcinoma when certain patient- and tumor-specific factors are integrated with the treatment plan. |
format | Online Article Text |
id | pubmed-8361065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-83610652021-08-17 Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study Lok, Edwin San, Pyay White, Victoria Liang, Olivia Widick, Page C. Reddy, Sindhu Pisati Wong, Eric T. Adv Radiat Oncol Scientific Article PURPOSE: Since the inception of tumor treating fields (TTFields) therapy as a Food and Drug Administration–approved treatment with known clinical efficacy against recurrent and newly diagnosed glioblastoma, various in silico modeling studies have been performed in an effort to better understand the distribution of applied electric fields throughout the human body for various malignancies or metastases. METHODS AND MATERIALS: Postacquisition attenuation-corrected positron emission tomography–computed tomography image data sets from 2 patients with ovarian carcinoma were used to fully segment various intrapelvic and intra-abdominal gross anatomic structures. A 3-dimensional finite element mesh model was generated and then solved for the distribution of applied electric fields, rate of energy deposition, and current density at the clinical target volumes (CTVs) and other intrapelvic and intra-abdominal structures. Electric field-volume histograms, specific absorption rate–volume histograms, and current density-volume histograms were generated, by which plan quality metrics were derived from and used to evaluate relative differences in field coverage between models under various conditions. RESULTS: TTFields therapy distribution throughout the pelvis and abdomen was largely heterogeneous, where specifically the field intensity at the CTV was heavily influenced by surrounding anatomic structures as well as its shape and location. The electric conductivity of the CTV had a direct effect on the field strength within itself, as did the position of the arrays on the surface of the pelvis and/or abdomen. CONCLUSION: The combined use of electric field-volume histograms, specific absorption rate-volume histograms, current density-volume histograms, and plan quality metrics enables a personalized method to dosimetrically evaluate patients receiving TTFields therapy for ovarian carcinoma when certain patient- and tumor-specific factors are integrated with the treatment plan. Elsevier 2021-05-17 /pmc/articles/PMC8361065/ /pubmed/34409211 http://dx.doi.org/10.1016/j.adro.2021.100716 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Scientific Article Lok, Edwin San, Pyay White, Victoria Liang, Olivia Widick, Page C. Reddy, Sindhu Pisati Wong, Eric T. Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study |
title | Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study |
title_full | Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study |
title_fullStr | Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study |
title_full_unstemmed | Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study |
title_short | Tumor Treating Fields for Ovarian Carcinoma: A Modeling Study |
title_sort | tumor treating fields for ovarian carcinoma: a modeling study |
topic | Scientific Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361065/ https://www.ncbi.nlm.nih.gov/pubmed/34409211 http://dx.doi.org/10.1016/j.adro.2021.100716 |
work_keys_str_mv | AT lokedwin tumortreatingfieldsforovariancarcinomaamodelingstudy AT sanpyay tumortreatingfieldsforovariancarcinomaamodelingstudy AT whitevictoria tumortreatingfieldsforovariancarcinomaamodelingstudy AT liangolivia tumortreatingfieldsforovariancarcinomaamodelingstudy AT widickpagec tumortreatingfieldsforovariancarcinomaamodelingstudy AT reddysindhupisati tumortreatingfieldsforovariancarcinomaamodelingstudy AT wongerict tumortreatingfieldsforovariancarcinomaamodelingstudy |