Cargando…

Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects

Revived analysis interests in natural products in the hope of discovering new and novel antileishmanial drug leads have been driven partially by the increasing incidence of drug resistance. However, the search for novel chemotherapeutics to combat drug resistance had previously concentrated on the t...

Descripción completa

Detalles Bibliográficos
Autores principales: Davies-Bolorunduro, O.F., Osuolale, O., Saibu, S., Adeleye, I.A., Aminah, N.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361068/
https://www.ncbi.nlm.nih.gov/pubmed/34409179
http://dx.doi.org/10.1016/j.heliyon.2021.e07710
Descripción
Sumario:Revived analysis interests in natural products in the hope of discovering new and novel antileishmanial drug leads have been driven partially by the increasing incidence of drug resistance. However, the search for novel chemotherapeutics to combat drug resistance had previously concentrated on the terrestrial environment. As a result, the marine environment was often overlooked. For example, actinomycetes are an immensely important group of bacteria for antibiotic production, producing two-thirds of the known antibiotics. However, these bacteria have been isolated primarily from terrestrial sources. Consequently, there have been revived efforts to discover new compounds from uncharted or uncommon environments like the marine ecosystem. Isolation, purification and structure elucidation of target compounds from complex metabolic extract are major challenges in natural products chemistry. As a result, marine-derived natural products from actinomycetes that have antileishmanial bioactivity potentials have been understudied. This review highlights metagenomic and bioassay approaches which could help streamline the drug discovery process thereby greatly reducing time and cost of dereplication to identify suitable antileishmanial drug candidates.