Cargando…
Deep learning and citizen science enable automated plant trait predictions from photographs
Plant functional traits (‘traits’) are essential for assessing biodiversity and ecosystem processes, but cumbersome to measure. To facilitate trait measurements, we test if traits can be predicted through visible morphological features by coupling heterogeneous photographs from citizen science (iNat...
Autores principales: | Schiller, Christopher, Schmidtlein, Sebastian, Boonman, Coline, Moreno-Martínez, Alvaro, Kattenborn, Teja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361087/ https://www.ncbi.nlm.nih.gov/pubmed/34385494 http://dx.doi.org/10.1038/s41598-021-95616-0 |
Ejemplares similares
-
Radiative transfer modelling reveals why canopy reflectance follows function
por: Kattenborn, Teja, et al.
Publicado: (2019) -
Deep learning increases the availability of organism photographs taken by citizens in citizen science programs
por: Suzuki-Ohno, Yukari, et al.
Publicado: (2022) -
Recognizability bias in citizen science photographs
por: Koch, Wouter, et al.
Publicado: (2023) -
An automated pipeline for supervised classification of petal color from citizen science photographs
por: Perez‐Udell, Rachel A., et al.
Publicado: (2023) -
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
por: Kattenborn, Teja, et al.
Publicado: (2019)