Cargando…
A Robust Machine Learning Based Framework for the Automated Detection of ADHD Using Pupillometric Biomarkers and Time Series Analysis
Accurate and efficient detection of attention-deficit/hyperactivity disorder (ADHD) is critical to ensure proper treatment for affected individuals. Current clinical examinations, however, are inefficient and prone to misdiagnosis, as they rely on qualitative observations of perceived behavior. We p...
Autores principales: | Das, William, Khanna, Shubh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361128/ https://www.ncbi.nlm.nih.gov/pubmed/34385511 http://dx.doi.org/10.1038/s41598-021-95673-5 |
Ejemplares similares
-
Analyzing the Time Course of Pupillometric Data
por: van Rij, Jacolien, et al.
Publicado: (2019) -
Pupillometric Assessment of Sleepiness in Narcolepsy
por: Prasad, Bharati, et al.
Publicado: (2011) -
Parallel graded attention in reading: A pupillometric study
por: Snell, Joshua, et al.
Publicado: (2018) -
Pupillometric Assessment of Autonomic Nervous System in Children with Allergic Rhinitis
por: Ozsutcu, Mustafa, et al.
Publicado: (2013) -
Electrophysiological and Pupillometric Abnormalities in PROM1 Cone–Rod Dystrophy
por: Park, Jason C., et al.
Publicado: (2020)