Cargando…

Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism

OBJECTIVE: Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain scarce. METHODS: We pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Klaus, Valentina S., Schriever, Sonja C., Monroy Kuhn, José Manuel, Peter, Andreas, Irmler, Martin, Tokarz, Janina, Prehn, Cornelia, Kastenmüller, Gabi, Beckers, Johannes, Adamski, Jerzy, Königsrainer, Alfred, Müller, Timo D., Heni, Martin, Tschöp, Matthias H., Pfluger, Paul T., Lutter, Dominik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361260/
https://www.ncbi.nlm.nih.gov/pubmed/34271221
http://dx.doi.org/10.1016/j.molmet.2021.101295
_version_ 1783737925591105536
author Klaus, Valentina S.
Schriever, Sonja C.
Monroy Kuhn, José Manuel
Peter, Andreas
Irmler, Martin
Tokarz, Janina
Prehn, Cornelia
Kastenmüller, Gabi
Beckers, Johannes
Adamski, Jerzy
Königsrainer, Alfred
Müller, Timo D.
Heni, Martin
Tschöp, Matthias H.
Pfluger, Paul T.
Lutter, Dominik
author_facet Klaus, Valentina S.
Schriever, Sonja C.
Monroy Kuhn, José Manuel
Peter, Andreas
Irmler, Martin
Tokarz, Janina
Prehn, Cornelia
Kastenmüller, Gabi
Beckers, Johannes
Adamski, Jerzy
Königsrainer, Alfred
Müller, Timo D.
Heni, Martin
Tschöp, Matthias H.
Pfluger, Paul T.
Lutter, Dominik
author_sort Klaus, Valentina S.
collection PubMed
description OBJECTIVE: Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain scarce. METHODS: We present here a fully unsupervised and versatile correlation-based method – termed Correlation guided Network Integration (CoNI) – to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach yields single transcripts of potential relevance that map to specific, densely connected, metabolic subgraphs or pathways. RESULTS: By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR). CONCLUSION: Our method's successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable, entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation.
format Online
Article
Text
id pubmed-8361260
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83612602021-08-17 Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism Klaus, Valentina S. Schriever, Sonja C. Monroy Kuhn, José Manuel Peter, Andreas Irmler, Martin Tokarz, Janina Prehn, Cornelia Kastenmüller, Gabi Beckers, Johannes Adamski, Jerzy Königsrainer, Alfred Müller, Timo D. Heni, Martin Tschöp, Matthias H. Pfluger, Paul T. Lutter, Dominik Mol Metab Original Article OBJECTIVE: Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain scarce. METHODS: We present here a fully unsupervised and versatile correlation-based method – termed Correlation guided Network Integration (CoNI) – to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach yields single transcripts of potential relevance that map to specific, densely connected, metabolic subgraphs or pathways. RESULTS: By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR). CONCLUSION: Our method's successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable, entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation. Elsevier 2021-07-13 /pmc/articles/PMC8361260/ /pubmed/34271221 http://dx.doi.org/10.1016/j.molmet.2021.101295 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Klaus, Valentina S.
Schriever, Sonja C.
Monroy Kuhn, José Manuel
Peter, Andreas
Irmler, Martin
Tokarz, Janina
Prehn, Cornelia
Kastenmüller, Gabi
Beckers, Johannes
Adamski, Jerzy
Königsrainer, Alfred
Müller, Timo D.
Heni, Martin
Tschöp, Matthias H.
Pfluger, Paul T.
Lutter, Dominik
Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism
title Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism
title_full Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism
title_fullStr Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism
title_full_unstemmed Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism
title_short Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism
title_sort correlation guided network integration (coni) reveals novel genes affecting hepatic metabolism
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361260/
https://www.ncbi.nlm.nih.gov/pubmed/34271221
http://dx.doi.org/10.1016/j.molmet.2021.101295
work_keys_str_mv AT klausvalentinas correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT schrieversonjac correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT monroykuhnjosemanuel correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT peterandreas correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT irmlermartin correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT tokarzjanina correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT prehncornelia correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT kastenmullergabi correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT beckersjohannes correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT adamskijerzy correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT konigsraineralfred correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT mullertimod correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT henimartin correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT tschopmatthiash correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT pflugerpault correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism
AT lutterdominik correlationguidednetworkintegrationconirevealsnovelgenesaffectinghepaticmetabolism