Cargando…

Comprior: facilitating the implementation and automated benchmarking of prior knowledge-based feature selection approaches on gene expression data sets

BACKGROUND: Reproducible benchmarking is important for assessing the effectiveness of novel feature selection approaches applied on gene expression data, especially for prior knowledge approaches that incorporate biological information from online knowledge bases. However, no full-fledged benchmarki...

Descripción completa

Detalles Bibliográficos
Autor principal: Perscheid, Cindy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361636/
https://www.ncbi.nlm.nih.gov/pubmed/34384353
http://dx.doi.org/10.1186/s12859-021-04308-z
Descripción
Sumario:BACKGROUND: Reproducible benchmarking is important for assessing the effectiveness of novel feature selection approaches applied on gene expression data, especially for prior knowledge approaches that incorporate biological information from online knowledge bases. However, no full-fledged benchmarking system exists that is extensible, provides built-in feature selection approaches, and a comprehensive result assessment encompassing classification performance, robustness, and biological relevance. Moreover, the particular needs of prior knowledge feature selection approaches, i.e. uniform access to knowledge bases, are not addressed. As a consequence, prior knowledge approaches are not evaluated amongst each other, leaving open questions regarding their effectiveness. RESULTS: We present the Comprior benchmark tool, which facilitates the rapid development and effortless benchmarking of feature selection approaches, with a special focus on prior knowledge approaches. Comprior is extensible by custom approaches, offers built-in standard feature selection approaches, enables uniform access to multiple knowledge bases, and provides a customizable evaluation infrastructure to compare multiple feature selection approaches regarding their classification performance, robustness, runtime, and biological relevance. CONCLUSION: Comprior allows reproducible benchmarking especially of prior knowledge approaches, which facilitates their applicability and for the first time enables a comprehensive assessment of their effectiveness. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04308-z.