Cargando…

A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH

BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology i...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor‐Weiner, Amaro, Pokkalla, Harsha, Han, Ling, Jia, Catherine, Huss, Ryan, Chung, Chuhan, Elliott, Hunter, Glass, Benjamin, Pethia, Kishalve, Carrasco‐Zevallos, Oscar, Shukla, Chinmay, Khettry, Urmila, Najarian, Robert, Taliano, Ross, Subramanian, G. Mani, Myers, Robert P., Wapinski, Ilan, Khosla, Aditya, Resnick, Murray, Montalto, Michael C., Anstee, Quentin M., Wong, Vincent Wai‐Sun, Trauner, Michael, Lawitz, Eric J., Harrison, Stephen A., Okanoue, Takeshi, Romero‐Gomez, Manuel, Goodman, Zachary, Loomba, Rohit, Beck, Andrew H., Younossi, Zobair M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361999/
https://www.ncbi.nlm.nih.gov/pubmed/33570776
http://dx.doi.org/10.1002/hep.31750
_version_ 1783738063911911424
author Taylor‐Weiner, Amaro
Pokkalla, Harsha
Han, Ling
Jia, Catherine
Huss, Ryan
Chung, Chuhan
Elliott, Hunter
Glass, Benjamin
Pethia, Kishalve
Carrasco‐Zevallos, Oscar
Shukla, Chinmay
Khettry, Urmila
Najarian, Robert
Taliano, Ross
Subramanian, G. Mani
Myers, Robert P.
Wapinski, Ilan
Khosla, Aditya
Resnick, Murray
Montalto, Michael C.
Anstee, Quentin M.
Wong, Vincent Wai‐Sun
Trauner, Michael
Lawitz, Eric J.
Harrison, Stephen A.
Okanoue, Takeshi
Romero‐Gomez, Manuel
Goodman, Zachary
Loomba, Rohit
Beck, Andrew H.
Younossi, Zobair M.
author_facet Taylor‐Weiner, Amaro
Pokkalla, Harsha
Han, Ling
Jia, Catherine
Huss, Ryan
Chung, Chuhan
Elliott, Hunter
Glass, Benjamin
Pethia, Kishalve
Carrasco‐Zevallos, Oscar
Shukla, Chinmay
Khettry, Urmila
Najarian, Robert
Taliano, Ross
Subramanian, G. Mani
Myers, Robert P.
Wapinski, Ilan
Khosla, Aditya
Resnick, Murray
Montalto, Michael C.
Anstee, Quentin M.
Wong, Vincent Wai‐Sun
Trauner, Michael
Lawitz, Eric J.
Harrison, Stephen A.
Okanoue, Takeshi
Romero‐Gomez, Manuel
Goodman, Zachary
Loomba, Rohit
Beck, Andrew H.
Younossi, Zobair M.
author_sort Taylor‐Weiner, Amaro
collection PubMed
description BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. APPROACH AND RESULTS: Here, we describe a machine learning (ML)‐based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML‐based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver‐related clinical events. We developed a heterogeneity‐sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. CONCLUSIONS: Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies.
format Online
Article
Text
id pubmed-8361999
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83619992021-08-17 A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH Taylor‐Weiner, Amaro Pokkalla, Harsha Han, Ling Jia, Catherine Huss, Ryan Chung, Chuhan Elliott, Hunter Glass, Benjamin Pethia, Kishalve Carrasco‐Zevallos, Oscar Shukla, Chinmay Khettry, Urmila Najarian, Robert Taliano, Ross Subramanian, G. Mani Myers, Robert P. Wapinski, Ilan Khosla, Aditya Resnick, Murray Montalto, Michael C. Anstee, Quentin M. Wong, Vincent Wai‐Sun Trauner, Michael Lawitz, Eric J. Harrison, Stephen A. Okanoue, Takeshi Romero‐Gomez, Manuel Goodman, Zachary Loomba, Rohit Beck, Andrew H. Younossi, Zobair M. Hepatology Original Articles BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. APPROACH AND RESULTS: Here, we describe a machine learning (ML)‐based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML‐based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver‐related clinical events. We developed a heterogeneity‐sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. CONCLUSIONS: Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies. John Wiley and Sons Inc. 2021-06-24 2021-07 /pmc/articles/PMC8361999/ /pubmed/33570776 http://dx.doi.org/10.1002/hep.31750 Text en © 2021 PathAI. Hepatology published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Taylor‐Weiner, Amaro
Pokkalla, Harsha
Han, Ling
Jia, Catherine
Huss, Ryan
Chung, Chuhan
Elliott, Hunter
Glass, Benjamin
Pethia, Kishalve
Carrasco‐Zevallos, Oscar
Shukla, Chinmay
Khettry, Urmila
Najarian, Robert
Taliano, Ross
Subramanian, G. Mani
Myers, Robert P.
Wapinski, Ilan
Khosla, Aditya
Resnick, Murray
Montalto, Michael C.
Anstee, Quentin M.
Wong, Vincent Wai‐Sun
Trauner, Michael
Lawitz, Eric J.
Harrison, Stephen A.
Okanoue, Takeshi
Romero‐Gomez, Manuel
Goodman, Zachary
Loomba, Rohit
Beck, Andrew H.
Younossi, Zobair M.
A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
title A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
title_full A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
title_fullStr A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
title_full_unstemmed A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
title_short A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
title_sort machine learning approach enables quantitative measurement of liver histology and disease monitoring in nash
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361999/
https://www.ncbi.nlm.nih.gov/pubmed/33570776
http://dx.doi.org/10.1002/hep.31750
work_keys_str_mv AT taylorweineramaro amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT pokkallaharsha amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT hanling amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT jiacatherine amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT hussryan amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT chungchuhan amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT elliotthunter amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT glassbenjamin amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT pethiakishalve amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT carrascozevallososcar amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT shuklachinmay amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT khettryurmila amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT najarianrobert amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT talianoross amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT subramaniangmani amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT myersrobertp amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT wapinskiilan amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT khoslaaditya amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT resnickmurray amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT montaltomichaelc amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT ansteequentinm amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT wongvincentwaisun amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT traunermichael amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT lawitzericj amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT harrisonstephena amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT okanouetakeshi amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT romerogomezmanuel amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT goodmanzachary amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT loombarohit amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT beckandrewh amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT younossizobairm amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT taylorweineramaro machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT pokkallaharsha machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT hanling machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT jiacatherine machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT hussryan machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT chungchuhan machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT elliotthunter machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT glassbenjamin machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT pethiakishalve machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT carrascozevallososcar machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT shuklachinmay machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT khettryurmila machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT najarianrobert machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT talianoross machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT subramaniangmani machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT myersrobertp machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT wapinskiilan machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT khoslaaditya machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT resnickmurray machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT montaltomichaelc machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT ansteequentinm machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT wongvincentwaisun machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT traunermichael machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT lawitzericj machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT harrisonstephena machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT okanouetakeshi machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT romerogomezmanuel machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT goodmanzachary machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT loombarohit machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT beckandrewh machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash
AT younossizobairm machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash