Cargando…
A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361999/ https://www.ncbi.nlm.nih.gov/pubmed/33570776 http://dx.doi.org/10.1002/hep.31750 |
_version_ | 1783738063911911424 |
---|---|
author | Taylor‐Weiner, Amaro Pokkalla, Harsha Han, Ling Jia, Catherine Huss, Ryan Chung, Chuhan Elliott, Hunter Glass, Benjamin Pethia, Kishalve Carrasco‐Zevallos, Oscar Shukla, Chinmay Khettry, Urmila Najarian, Robert Taliano, Ross Subramanian, G. Mani Myers, Robert P. Wapinski, Ilan Khosla, Aditya Resnick, Murray Montalto, Michael C. Anstee, Quentin M. Wong, Vincent Wai‐Sun Trauner, Michael Lawitz, Eric J. Harrison, Stephen A. Okanoue, Takeshi Romero‐Gomez, Manuel Goodman, Zachary Loomba, Rohit Beck, Andrew H. Younossi, Zobair M. |
author_facet | Taylor‐Weiner, Amaro Pokkalla, Harsha Han, Ling Jia, Catherine Huss, Ryan Chung, Chuhan Elliott, Hunter Glass, Benjamin Pethia, Kishalve Carrasco‐Zevallos, Oscar Shukla, Chinmay Khettry, Urmila Najarian, Robert Taliano, Ross Subramanian, G. Mani Myers, Robert P. Wapinski, Ilan Khosla, Aditya Resnick, Murray Montalto, Michael C. Anstee, Quentin M. Wong, Vincent Wai‐Sun Trauner, Michael Lawitz, Eric J. Harrison, Stephen A. Okanoue, Takeshi Romero‐Gomez, Manuel Goodman, Zachary Loomba, Rohit Beck, Andrew H. Younossi, Zobair M. |
author_sort | Taylor‐Weiner, Amaro |
collection | PubMed |
description | BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. APPROACH AND RESULTS: Here, we describe a machine learning (ML)‐based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML‐based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver‐related clinical events. We developed a heterogeneity‐sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. CONCLUSIONS: Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies. |
format | Online Article Text |
id | pubmed-8361999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83619992021-08-17 A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH Taylor‐Weiner, Amaro Pokkalla, Harsha Han, Ling Jia, Catherine Huss, Ryan Chung, Chuhan Elliott, Hunter Glass, Benjamin Pethia, Kishalve Carrasco‐Zevallos, Oscar Shukla, Chinmay Khettry, Urmila Najarian, Robert Taliano, Ross Subramanian, G. Mani Myers, Robert P. Wapinski, Ilan Khosla, Aditya Resnick, Murray Montalto, Michael C. Anstee, Quentin M. Wong, Vincent Wai‐Sun Trauner, Michael Lawitz, Eric J. Harrison, Stephen A. Okanoue, Takeshi Romero‐Gomez, Manuel Goodman, Zachary Loomba, Rohit Beck, Andrew H. Younossi, Zobair M. Hepatology Original Articles BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. APPROACH AND RESULTS: Here, we describe a machine learning (ML)‐based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML‐based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver‐related clinical events. We developed a heterogeneity‐sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. CONCLUSIONS: Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies. John Wiley and Sons Inc. 2021-06-24 2021-07 /pmc/articles/PMC8361999/ /pubmed/33570776 http://dx.doi.org/10.1002/hep.31750 Text en © 2021 PathAI. Hepatology published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Taylor‐Weiner, Amaro Pokkalla, Harsha Han, Ling Jia, Catherine Huss, Ryan Chung, Chuhan Elliott, Hunter Glass, Benjamin Pethia, Kishalve Carrasco‐Zevallos, Oscar Shukla, Chinmay Khettry, Urmila Najarian, Robert Taliano, Ross Subramanian, G. Mani Myers, Robert P. Wapinski, Ilan Khosla, Aditya Resnick, Murray Montalto, Michael C. Anstee, Quentin M. Wong, Vincent Wai‐Sun Trauner, Michael Lawitz, Eric J. Harrison, Stephen A. Okanoue, Takeshi Romero‐Gomez, Manuel Goodman, Zachary Loomba, Rohit Beck, Andrew H. Younossi, Zobair M. A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH |
title | A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH |
title_full | A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH |
title_fullStr | A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH |
title_full_unstemmed | A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH |
title_short | A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH |
title_sort | machine learning approach enables quantitative measurement of liver histology and disease monitoring in nash |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361999/ https://www.ncbi.nlm.nih.gov/pubmed/33570776 http://dx.doi.org/10.1002/hep.31750 |
work_keys_str_mv | AT taylorweineramaro amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT pokkallaharsha amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT hanling amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT jiacatherine amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT hussryan amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT chungchuhan amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT elliotthunter amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT glassbenjamin amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT pethiakishalve amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT carrascozevallososcar amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT shuklachinmay amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT khettryurmila amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT najarianrobert amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT talianoross amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT subramaniangmani amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT myersrobertp amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT wapinskiilan amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT khoslaaditya amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT resnickmurray amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT montaltomichaelc amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT ansteequentinm amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT wongvincentwaisun amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT traunermichael amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT lawitzericj amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT harrisonstephena amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT okanouetakeshi amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT romerogomezmanuel amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT goodmanzachary amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT loombarohit amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT beckandrewh amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT younossizobairm amachinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT taylorweineramaro machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT pokkallaharsha machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT hanling machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT jiacatherine machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT hussryan machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT chungchuhan machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT elliotthunter machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT glassbenjamin machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT pethiakishalve machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT carrascozevallososcar machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT shuklachinmay machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT khettryurmila machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT najarianrobert machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT talianoross machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT subramaniangmani machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT myersrobertp machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT wapinskiilan machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT khoslaaditya machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT resnickmurray machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT montaltomichaelc machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT ansteequentinm machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT wongvincentwaisun machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT traunermichael machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT lawitzericj machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT harrisonstephena machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT okanouetakeshi machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT romerogomezmanuel machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT goodmanzachary machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT loombarohit machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT beckandrewh machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash AT younossizobairm machinelearningapproachenablesquantitativemeasurementofliverhistologyanddiseasemonitoringinnash |