Cargando…
Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus)
In ruminants, the level of food intake affects net chewing efficiency and hence faecal particle size. For nonruminants, corresponding data are lacking. Here, we report the effect of an increased food intake of a mixed diet in four domestic rabbit does due to lactation, and assess changes in particle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362112/ https://www.ncbi.nlm.nih.gov/pubmed/34254468 http://dx.doi.org/10.1002/jez.2505 |
_version_ | 1783738091531403264 |
---|---|
author | Findeisen, Eva Südekum, Karl‐Heinz Fritz, Julia Hummel, Jürgen Clauss, Marcus |
author_facet | Findeisen, Eva Südekum, Karl‐Heinz Fritz, Julia Hummel, Jürgen Clauss, Marcus |
author_sort | Findeisen, Eva |
collection | PubMed |
description | In ruminants, the level of food intake affects net chewing efficiency and hence faecal particle size. For nonruminants, corresponding data are lacking. Here, we report the effect of an increased food intake of a mixed diet in four domestic rabbit does due to lactation, and assess changes in particle size (as determined by wet sieving analysis) along the rabbit digestive tract. During lactation, rabbits achieved a distinctively higher dry matter intake than at maintenance, with a concomitant reduction in mean retention times of solute and particle markers, an increase in dry matter gut fill, a reduction in apparent digestibility of dry matter, and an overall increase in digestible dry matter intake. By contrast, there was no change in faecal mean particle size (mean ± SD: 0.58 ± 0.02 vs. 0.56 ± 0.01 mm). A comparison of diet, stomach content and faecal mean particle size suggested that 98% of particle size reduction occurred due to ingestive mastication and 2% due to digestive processes. Very fine particles passing the finest sieve, putatively not only of dietary but mainly of microbial origin, were particularly concentrated in caecum contents, which corresponds to retention of microbes via a ‘wash‐back' colonic separation mechanism, to concentrate them in caecotrophs that are re‐ingested. This study gives rise to the hypothesis that chewing efficiency on a consistent diet is not impaired by intake level in nonruminant mammals. |
format | Online Article Text |
id | pubmed-8362112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83621122021-08-17 Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) Findeisen, Eva Südekum, Karl‐Heinz Fritz, Julia Hummel, Jürgen Clauss, Marcus J Exp Zool A Ecol Integr Physiol Research Papers In ruminants, the level of food intake affects net chewing efficiency and hence faecal particle size. For nonruminants, corresponding data are lacking. Here, we report the effect of an increased food intake of a mixed diet in four domestic rabbit does due to lactation, and assess changes in particle size (as determined by wet sieving analysis) along the rabbit digestive tract. During lactation, rabbits achieved a distinctively higher dry matter intake than at maintenance, with a concomitant reduction in mean retention times of solute and particle markers, an increase in dry matter gut fill, a reduction in apparent digestibility of dry matter, and an overall increase in digestible dry matter intake. By contrast, there was no change in faecal mean particle size (mean ± SD: 0.58 ± 0.02 vs. 0.56 ± 0.01 mm). A comparison of diet, stomach content and faecal mean particle size suggested that 98% of particle size reduction occurred due to ingestive mastication and 2% due to digestive processes. Very fine particles passing the finest sieve, putatively not only of dietary but mainly of microbial origin, were particularly concentrated in caecum contents, which corresponds to retention of microbes via a ‘wash‐back' colonic separation mechanism, to concentrate them in caecotrophs that are re‐ingested. This study gives rise to the hypothesis that chewing efficiency on a consistent diet is not impaired by intake level in nonruminant mammals. John Wiley and Sons Inc. 2021-07-12 2021-08-01 /pmc/articles/PMC8362112/ /pubmed/34254468 http://dx.doi.org/10.1002/jez.2505 Text en © 2021 The Authors. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Papers Findeisen, Eva Südekum, Karl‐Heinz Fritz, Julia Hummel, Jürgen Clauss, Marcus Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) |
title | Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) |
title_full | Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) |
title_fullStr | Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) |
title_full_unstemmed | Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) |
title_short | Increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (Oryctolagus cuniculus) |
title_sort | increasing food intake affects digesta retention, digestibility and gut fill but not chewing efficiency in domestic rabbits (oryctolagus cuniculus) |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362112/ https://www.ncbi.nlm.nih.gov/pubmed/34254468 http://dx.doi.org/10.1002/jez.2505 |
work_keys_str_mv | AT findeiseneva increasingfoodintakeaffectsdigestaretentiondigestibilityandgutfillbutnotchewingefficiencyindomesticrabbitsoryctolaguscuniculus AT sudekumkarlheinz increasingfoodintakeaffectsdigestaretentiondigestibilityandgutfillbutnotchewingefficiencyindomesticrabbitsoryctolaguscuniculus AT fritzjulia increasingfoodintakeaffectsdigestaretentiondigestibilityandgutfillbutnotchewingefficiencyindomesticrabbitsoryctolaguscuniculus AT hummeljurgen increasingfoodintakeaffectsdigestaretentiondigestibilityandgutfillbutnotchewingefficiencyindomesticrabbitsoryctolaguscuniculus AT claussmarcus increasingfoodintakeaffectsdigestaretentiondigestibilityandgutfillbutnotchewingefficiencyindomesticrabbitsoryctolaguscuniculus |