Cargando…
Phosphorus‐Containing Superbases: Recent Progress in the Chemistry of Electron‐Abundant Phosphines and Phosphazenes
The renaissance of Brønsted superbases is primarily based on their pronounced capacity for a large variety of chemical transformations under mild reaction conditions. Four major set screws are available for the selective tuning of the basicity: the nature of the basic center (N, P, …), the degree of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362139/ https://www.ncbi.nlm.nih.gov/pubmed/34032319 http://dx.doi.org/10.1002/chem.202101065 |
Sumario: | The renaissance of Brønsted superbases is primarily based on their pronounced capacity for a large variety of chemical transformations under mild reaction conditions. Four major set screws are available for the selective tuning of the basicity: the nature of the basic center (N, P, …), the degree of electron donation by substituents to the central atom, the possibility of charge delocalization, and the energy gain by hydrogen bonding. Within the past decades, a plethora of neutral electron‐rich phosphine and phosphazene bases have appeared in the literature. Their outstanding properties and advantages over inorganic or charged bases have now made them indispensable as auxiliary bases in deprotonation processes. Herein, an update of the chemistry of basic phosphines and phosphazenes is given. In addition, due to widespread interest, their use in catalysis or as ligands in coordination chemistry is highlighted. |
---|