Cargando…

A Vibration‐Induced‐Emission‐Based Fluorescent Chemosensor for the Selective and Visual Recognition of Glucose

The development of chemosensors to detect analytes in biologically relevant solutions is a challenging task. We report the synthesis of a fluorescent receptor that combines vibration‐induced emission (VIE) and dynamic covalent chemistry for the detection of glucose in aqueous media. We show that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos‐Soriano, Javier, Benitez‐Benitez, Sergio J., Davis, Anthony P., Galan, M. Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362141/
https://www.ncbi.nlm.nih.gov/pubmed/33857348
http://dx.doi.org/10.1002/anie.202103545
Descripción
Sumario:The development of chemosensors to detect analytes in biologically relevant solutions is a challenging task. We report the synthesis of a fluorescent receptor that combines vibration‐induced emission (VIE) and dynamic covalent chemistry for the detection of glucose in aqueous media. We show that the bis‐2‐(N‐methylaminomethyl)phenylboronic acid‐decorated N,N′‐diphenyl‐dihydrodibenzo[a,c]phenazine (DPAC) receptor 1 can detect glucose and discriminate between closely related monosaccharides including those commonly found in blood. Preliminary studies suggest monosaccharides bind to the DPAC‐receptor with a 1:1 stoichiometry to produce pseudomacrocyclic complexes, which in turn leads to distinct optical changes in the fluorescent emission of the receptor for each host. Moreover, the complexation‐induced change in emission can be detected visually and quantified in a ratiometric way. Our results highlight the potential of VIE‐type receptors for the quantitative determination of saccharides in biological samples.