Cargando…

Comparative analysis of swine leukocyte antigen gene diversity in European farmed pigs

In Europe, swine represent economically important farm animals and furthermore have become a preferred preclinical large animal model for biomedical studies, transplantation and regenerative medicine research. The need for typing of the swine leukocyte antigen (SLA) is increasing with the expanded u...

Descripción completa

Detalles Bibliográficos
Autores principales: Hammer, S. E., Duckova, T., Groiss, S., Stadler, M., Jensen‐Waern, M., Golde, W. T., Gimsa, U., Saalmueller, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362188/
https://www.ncbi.nlm.nih.gov/pubmed/34028065
http://dx.doi.org/10.1111/age.13090
Descripción
Sumario:In Europe, swine represent economically important farm animals and furthermore have become a preferred preclinical large animal model for biomedical studies, transplantation and regenerative medicine research. The need for typing of the swine leukocyte antigen (SLA) is increasing with the expanded use of pigs as models for human diseases and organ‐transplantation experiments and their use in infection studies and for design of veterinary vaccines. In this study, we characterised the SLA class I (SLA‐1, SLA‐2, SLA‐3) and class II (DRB1, DQB1, DQA) genes of 549 farmed pigs representing nine commercial pig lines by low‐resolution (Lr) SLA haplotyping. In total, 50 class I and 37 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotypes Lr‐04.0 (SLA‐1*04XX‐SLA‐3*04XX(04:04)‐SLA‐2*04XX) and Lr‐32.0 (SLA‐1*07XX‐SLA‐3*04XX(04:04)‐SLA‐2*02XX) occurred at frequencies of 11.02 and 8.20% respectively. For SLA class II, the most prevalent haplotypes Lr‐0.15b (DRB1*04XX(04:05/04:06)‐DQB1*02XX(02:02)‐DQA*02XX) and Lr‐0.12 (DRB1*06XX‐DQB1*07XX‐DQA*01XX) occurred at frequencies of 14.37 and 12.46% respectively. Meanwhile, our laboratory has contributed to several vaccine correlation studies (e.g. Porcine Reproductive and Respiratory Syndrome Virus, Classical Swine Fever Virus, Foot‐and‐Mouth Disease Virus and Swine Influenza A Virus) elucidating the immunodominance in the T‐cell response with antigen specificity dependent on certain SLA‐I and SLA‐II haplotypes. Moreover, these SLA–immune response correlations could facilitate tailored vaccine development, as SLA‐I Lr‐04.0 and Lr‐32.0 as well as SLA‐II Lr‐0.15b and Lr‐0.12 are highly abundant haplotypes in European farmed pigs.