Cargando…
Development of data-driven framework for automatically identifying patient cohorts from linked electronic health records
Autores principales: | Fern'andez-Guti'errez, Fabiola, Kennedy, Jonathan, Cooksey, Roxanne, Atkinson, Mark, Choy, Ernest, Brophy, Sinead, Zhou, Shang-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Swansea University
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362486/ http://dx.doi.org/10.23889/ijpds.v1i1.86 |
Ejemplares similares
-
Mining Primary Care Electronic Health Records for Automatic Disease Phenotyping: A Transparent Machine Learning Framework
por: Fernández-Gutiérrez, Fabiola, et al.
Publicado: (2021) -
Real-world use of an etanercept biosimilar including selective versus automatic substitution in inflammatory arthritis patients: a UK-based electronic health records study
por: Cooksey, Roxanne, et al.
Publicado: (2022) -
Biologic use in psoriatic arthritis and ankylosing spondylitis
patients: a descriptive epidemiological study using linked, routine data in
Wales, UK
por: Cooksey, Roxanne, et al.
Publicado: (2021) -
Predicting a diagnosis of ankylosing spondylitis using primary care health records–A machine learning approach
por: Kennedy, Jonathan, et al.
Publicado: (2023) -
Shielding reduced incidence of COVID-19 in patients with inflammatory arthritis but vulnerability is associated with increased mortality
por: Cooksey, Roxanne, et al.
Publicado: (2022)