Cargando…
Discovering optimal strategies for mitigating COVID-19 spread using machine learning: Experience from Asia
To inform data-driven decisions in fighting the global pandemic caused by COVID-19, this research develops a spatiotemporal analysis framework under the combination of an ensemble model (random forest regression) and a multi-objective optimization algorithm (NSGA-II). It has been verified for four A...
Autores principales: | Pan, Yue, Zhang, Limao, Yan, Zhenzhen, Lwin, May O., Skibniewski, Miroslaw J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362659/ https://www.ncbi.nlm.nih.gov/pubmed/34414067 http://dx.doi.org/10.1016/j.scs.2021.103254 |
Ejemplares similares
-
Discovering spatial-temporal patterns via complex networks in investigating COVID-19 pandemic in the United States
por: Pan, Yue, et al.
Publicado: (2022) -
Learning to discover: machine learning in high-energy physics
por: Kégl, Balázs
Publicado: (2014) -
Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies
por: Valdez, L. D., et al.
Publicado: (2015) -
Pig manure treatment strategies for mitigating the spread of antibiotic resistance
por: Zalewska, Magdalena, et al.
Publicado: (2023) -
Unsupervised machine learning discovers classes in aluminium alloys
por: Bhat, Ninad, et al.
Publicado: (2023)