Cargando…
A Framework for Identification of Healthy Potted Seedlings in Automatic Transplanting System Using Computer Vision
Automatic transplanting of seedlings is of great significance to vegetable cultivation factories. Accurate and efficient identification of healthy seedlings is the fundamental process of automatic transplanting. This study proposed a computer vision-based identification framework of healthy seedling...
Autores principales: | Jin, Xin, Wang, Chenglin, Chen, Kaikang, Ji, Jiangtao, Liu, Suchwen, Wang, Yawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362899/ https://www.ncbi.nlm.nih.gov/pubmed/34394144 http://dx.doi.org/10.3389/fpls.2021.691753 |
Ejemplares similares
-
Study on Pear Flowers Detection Performance of YOLO-PEFL Model Trained With Synthetic Target Images
por: Wang, Chenglin, et al.
Publicado: (2022) -
Automatic pest identification system in the greenhouse based on deep learning and machine vision
por: Zhang, Xiaolei, et al.
Publicado: (2023) -
Selective transplantation method of leafy vegetable seedlings based on ResNet 18 network
por: Jin, Xin, et al.
Publicado: (2022) -
In situ Root Phenotypes of Cotton Seedlings Under Phosphorus Stress Revealed Through RhizoPot
por: Zhang, Zichen, et al.
Publicado: (2021) -
Response of root and root hair phenotypes of cotton seedlings under high temperature revealed with RhizoPot
por: Fan, Cong, et al.
Publicado: (2022)