Cargando…
Cerebral hemodynamic response during a live action-observation and action-execution task: A fNIRS study
Although many studies have examined the location of the action observation network (AON) in human adults, the shared neural correlates of action-observation and action-execution are still unclear partially due to lack of ecologically valid neuroimaging measures. In this study, we aim to demonstrate...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362964/ https://www.ncbi.nlm.nih.gov/pubmed/34388157 http://dx.doi.org/10.1371/journal.pone.0253788 |
Sumario: | Although many studies have examined the location of the action observation network (AON) in human adults, the shared neural correlates of action-observation and action-execution are still unclear partially due to lack of ecologically valid neuroimaging measures. In this study, we aim to demonstrate the feasibility of using functional near infrared spectroscopy (fNIRS) to measure the neural correlates of action-observation and action execution regions during a live task. Thirty adults reached for objects or observed an experimenter reaching for objects while their cerebral hemodynamic responses including oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) were recorded in the sensorimotor and parietal regions. Our results indicated that the parietal regions, including bilateral superior parietal lobule (SPL), bilateral inferior parietal lobule (IPL), right supra-marginal region (SMG) and right angular gyrus (AG) share neural activity during action-observation and action-execution. Our findings confirm the applicability of fNIRS for the study of the AON and lay the foundation for future work with developmental and clinical populations. |
---|