Cargando…
Bandgap prediction of two-dimensional materials using machine learning
The bandgap of two-dimensional (2D) materials plays an important role in their applications to various devices. For instance, the gapless nature of graphene limits the use of this material to semiconductor device applications, whereas the indirect bandgap of molybdenum disulfide is suitable for elec...
Autores principales: | Zhang, Yu, Xu, Wenjing, Liu, Guangjie, Zhang, Zhiyong, Zhu, Jinlong, Li, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363013/ https://www.ncbi.nlm.nih.gov/pubmed/34388173 http://dx.doi.org/10.1371/journal.pone.0255637 |
Ejemplares similares
-
Coulomb engineering of the bandgap and excitons in two-dimensional materials
por: Raja, Archana, et al.
Publicado: (2017) -
Machine learning bandgaps of double perovskites
por: Pilania, G., et al.
Publicado: (2016) -
Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H(2) evolution and CO(2) photoreduction to CO
por: Zhao, Fulai, et al.
Publicado: (2020) -
Robust Direct Bandgap Characteristics of One- and Two-Dimensional ReS(2)
por: Yu, Zhi Gen, et al.
Publicado: (2015) -
Deep elastic strain engineering of bandgap through machine learning
por: Shi, Zhe, et al.
Publicado: (2019)