Cargando…
Accelerating computational discovery of porous solids through improved navigation of energy-structure-function maps
While energy-structure-function (ESF) maps are a powerful new tool for in silico materials design, the cost of acquiring an ESF map for many properties is too high for routine integration into high-throughput virtual screening workflows. Here, we propose the next evolution of the ESF map. This uses...
Autores principales: | Pyzer-Knapp, Edward O., Chen, Linjiang, Day, Graeme M., Cooper, Andrew I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363149/ https://www.ncbi.nlm.nih.gov/pubmed/34389543 http://dx.doi.org/10.1126/sciadv.abi4763 |
Ejemplares similares
-
Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular crystals
por: Zhao, Chengxi, et al.
Publicado: (2021) -
Deep learning for physical scientists: accelerating research with machine learning
por: Pyzer-Knapp, Edward O
Publicado: (2019) -
Functional materials discovery using energy–structure–function maps
por: Pulido, Angeles, et al.
Publicado: (2017) -
Geometric landscapes for material discovery within energy–structure–function maps
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020) -
An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics
por: Pyzer-Knapp, Edward O., et al.
Publicado: (2016)