Cargando…
CT-Based Pelvic T(1)-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-Consistent Generative Adversarial Network (Cycle-GAN)
BACKGROUND: Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician interaction and is a major challenge. Curren...
Autores principales: | Kalantar, Reza, Messiou, Christina, Winfield, Jessica M., Renn, Alexandra, Latifoltojar, Arash, Downey, Kate, Sohaib, Aslam, Lalondrelle, Susan, Koh, Dow-Mu, Blackledge, Matthew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363308/ https://www.ncbi.nlm.nih.gov/pubmed/34395244 http://dx.doi.org/10.3389/fonc.2021.665807 |
Ejemplares similares
-
Non-contrast CT synthesis using patch-based cycle-consistent generative adversarial network (Cycle-GAN) for radiomics and deep learning in the era of COVID-19
por: Kalantar, Reza, et al.
Publicado: (2023) -
Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges
por: Kalantar, Reza, et al.
Publicado: (2021) -
C-UNet: Complement UNet for Remote Sensing Road Extraction
por: Hou, Yuewu, et al.
Publicado: (2021) -
Application of Improved UNet and EnglightenGAN for Segmentation and Reconstruction of In Situ Roots
por: Yu, Qiushi, et al.
Publicado: (2023) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022)