Cargando…
Accuracy of Deep Learning Algorithms for the Diagnosis of Retinopathy of Prematurity by Fundus Images: A Systematic Review and Meta-Analysis
BACKGROUND: Retinopathy of prematurity (ROP) occurs in preterm infants and may contribute to blindness. Deep learning (DL) models have been used for ophthalmologic diagnoses. We performed a systematic review and meta-analysis of published evidence to summarize and evaluate the diagnostic accuracy of...
Autores principales: | Zhang, Jingjing, Liu, Yangyang, Mitsuhashi, Toshiharu, Matsuo, Toshihiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363465/ https://www.ncbi.nlm.nih.gov/pubmed/34394982 http://dx.doi.org/10.1155/2021/8883946 |
Ejemplares similares
-
Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease
por: Tan, Zachary, et al.
Publicado: (2019) -
Smartphone-based fundus documentation in retinopathy of prematurity
por: Raju, Biju, et al.
Publicado: (2019) -
Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm
por: Li, Feng, et al.
Publicado: (2019) -
Color fundus imaging in retinopathy of prematurity screening: Present and future
por: Jayanna, Sushma, et al.
Publicado: (2023) -
Development of a deep residual learning algorithm to screen for glaucoma from fundus photography
por: Shibata, Naoto, et al.
Publicado: (2018)