Cargando…

Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices

The realization of hybrid superconductor–semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls...

Descripción completa

Detalles Bibliográficos
Autores principales: Heedt, Sebastian, Quintero-Pérez, Marina, Borsoi, Francesco, Fursina, Alexandra, van Loo, Nick, Mazur, Grzegorz P., Nowak, Michał P., Ammerlaan, Mark, Li, Kongyi, Korneychuk, Svetlana, Shen, Jie, van de Poll, May An Y., Badawy, Ghada, Gazibegovic, Sasa, de Jong, Nick, Aseev, Pavel, van Hoogdalem, Kevin, Bakkers, Erik P. A. M., Kouwenhoven, Leo P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363628/
https://www.ncbi.nlm.nih.gov/pubmed/34389705
http://dx.doi.org/10.1038/s41467-021-25100-w
_version_ 1783738384094593024
author Heedt, Sebastian
Quintero-Pérez, Marina
Borsoi, Francesco
Fursina, Alexandra
van Loo, Nick
Mazur, Grzegorz P.
Nowak, Michał P.
Ammerlaan, Mark
Li, Kongyi
Korneychuk, Svetlana
Shen, Jie
van de Poll, May An Y.
Badawy, Ghada
Gazibegovic, Sasa
de Jong, Nick
Aseev, Pavel
van Hoogdalem, Kevin
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
author_facet Heedt, Sebastian
Quintero-Pérez, Marina
Borsoi, Francesco
Fursina, Alexandra
van Loo, Nick
Mazur, Grzegorz P.
Nowak, Michał P.
Ammerlaan, Mark
Li, Kongyi
Korneychuk, Svetlana
Shen, Jie
van de Poll, May An Y.
Badawy, Ghada
Gazibegovic, Sasa
de Jong, Nick
Aseev, Pavel
van Hoogdalem, Kevin
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
author_sort Heedt, Sebastian
collection PubMed
description The realization of hybrid superconductor–semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.
format Online
Article
Text
id pubmed-8363628
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83636282021-08-19 Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices Heedt, Sebastian Quintero-Pérez, Marina Borsoi, Francesco Fursina, Alexandra van Loo, Nick Mazur, Grzegorz P. Nowak, Michał P. Ammerlaan, Mark Li, Kongyi Korneychuk, Svetlana Shen, Jie van de Poll, May An Y. Badawy, Ghada Gazibegovic, Sasa de Jong, Nick Aseev, Pavel van Hoogdalem, Kevin Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Nat Commun Article The realization of hybrid superconductor–semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids. Nature Publishing Group UK 2021-08-13 /pmc/articles/PMC8363628/ /pubmed/34389705 http://dx.doi.org/10.1038/s41467-021-25100-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Heedt, Sebastian
Quintero-Pérez, Marina
Borsoi, Francesco
Fursina, Alexandra
van Loo, Nick
Mazur, Grzegorz P.
Nowak, Michał P.
Ammerlaan, Mark
Li, Kongyi
Korneychuk, Svetlana
Shen, Jie
van de Poll, May An Y.
Badawy, Ghada
Gazibegovic, Sasa
de Jong, Nick
Aseev, Pavel
van Hoogdalem, Kevin
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
title Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
title_full Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
title_fullStr Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
title_full_unstemmed Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
title_short Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
title_sort shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363628/
https://www.ncbi.nlm.nih.gov/pubmed/34389705
http://dx.doi.org/10.1038/s41467-021-25100-w
work_keys_str_mv AT heedtsebastian shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT quinteroperezmarina shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT borsoifrancesco shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT fursinaalexandra shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT vanloonick shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT mazurgrzegorzp shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT nowakmichałp shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT ammerlaanmark shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT likongyi shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT korneychuksvetlana shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT shenjie shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT vandepollmayany shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT badawyghada shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT gazibegovicsasa shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT dejongnick shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT aseevpavel shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT vanhoogdalemkevin shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT bakkerserikpam shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices
AT kouwenhovenleop shadowwalllithographyofballisticsuperconductorsemiconductorquantumdevices