Cargando…

Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor

Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advanta...

Descripción completa

Detalles Bibliográficos
Autores principales: Komatsu, Natsumi, Ichinose, Yota, Dewey, Oliver S., Taylor, Lauren W., Trafford, Mitchell A., Yomogida, Yohei, Wehmeyer, Geoff, Pasquali, Matteo, Yanagi, Kazuhiro, Kono, Junichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363648/
https://www.ncbi.nlm.nih.gov/pubmed/34389723
http://dx.doi.org/10.1038/s41467-021-25208-z
Descripción
Sumario:Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m(−1) K(−2)) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.