Cargando…
Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routing
OBJECTIVE: Multitask learning (MTL) using electronic health records allows concurrent prediction of multiple endpoints. MTL has shown promise in improving model performance and training efficiency; however, it often suffers from negative transfer – impaired learning if tasks are not appropriately se...
Autores principales: | Roy, Subhrajit, Mincu, Diana, Loreaux, Eric, Mottram, Anne, Protsyuk, Ivan, Harris, Natalie, Xue, Yuan, Schrouff, Jessica, Montgomery, Hugh, Connell, Alistair, Tomasev, Nenad, Karthikesalingam, Alan, Seneviratne, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363803/ https://www.ncbi.nlm.nih.gov/pubmed/34151965 http://dx.doi.org/10.1093/jamia/ocab101 |
Ejemplares similares
-
Detecting shortcut learning for fair medical AI using shortcut testing
por: Brown, Alexander, et al.
Publicado: (2023) -
A Clinically Applicable Approach to Continuous Prediction of Future
Acute Kidney Injury
por: Tomašev, Nenad, et al.
Publicado: (2019) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization
por: Blum, Torsten, et al.
Publicado: (2008) -
Efficient sequential and parallel algorithms for record linkage
por: Mamun, Abdullah-Al, et al.
Publicado: (2014)