Cargando…

Smurf2 exerts neuroprotective effects on cerebral ischemic injury

The present study aimed to explore specific mechanisms involved in mediating the neuroprotective effects of Smad ubiquitination regulatory factor 2 (Smurf2) in cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) mouse model and an oxygen–glucose deprivation (OGD)–treated neuron model...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Haibin, Sun, Shengtao, Liu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363835/
https://www.ncbi.nlm.nih.gov/pubmed/33722608
http://dx.doi.org/10.1016/j.jbc.2021.100537
_version_ 1783738417702502400
author Liu, Haibin
Sun, Shengtao
Liu, Bing
author_facet Liu, Haibin
Sun, Shengtao
Liu, Bing
author_sort Liu, Haibin
collection PubMed
description The present study aimed to explore specific mechanisms involved in mediating the neuroprotective effects of Smad ubiquitination regulatory factor 2 (Smurf2) in cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) mouse model and an oxygen–glucose deprivation (OGD)–treated neuron model were developed. The expression of Smurf2, Yin Yang 1 (YY1), hypoxia-inducible factor-1 alpha (HIF1α), and DNA damage–inducible transcript 4 gene (DDIT4) was analyzed. Thereafter, the expression of Smurf2, YY1, HIF1α, and DDIT4 was altered in the MCAO mice and OGD-treated neurons. Apoptosis in tissues and cerebral infarction were assessed. In neurons, the expression of apoptosis-related proteins, viability, and apoptosis were assessed, followed by evaluation of lactate dehydrogenase leakage rate. The interaction between Smurf2 and YY1 was analyzed by coimmunoprecipitation assay and that between YY1 ubiquitination by in vivo ubiquitination experiment. The results showed downregulation of Smurf2 and upregulation of YY1, HIF1α, and DDIT4 in both MCAO mice and OGD-treated neurons. Smurf2 elevated YY1 ubiquitination and degradation, and YY1 increased HIF1α expression to promote DDIT4 in neurons. Overexpressed Smurf2 or downregulated YY1, HIF1α, or DDIT4 reduced the volume of cerebral infarction and apoptosis in MCAO mice, while enhancing cell viability and reducing apoptosis and lactate dehydrogenase leakage in OGD-treated neurons. In summary, our findings elucidated a neuroprotective role of Smurf2 in cerebral ischemic injury via inactivation of the YY1/HIF1α/DDIT4 axis.
format Online
Article
Text
id pubmed-8363835
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-83638352021-08-23 Smurf2 exerts neuroprotective effects on cerebral ischemic injury Liu, Haibin Sun, Shengtao Liu, Bing J Biol Chem Research Article The present study aimed to explore specific mechanisms involved in mediating the neuroprotective effects of Smad ubiquitination regulatory factor 2 (Smurf2) in cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) mouse model and an oxygen–glucose deprivation (OGD)–treated neuron model were developed. The expression of Smurf2, Yin Yang 1 (YY1), hypoxia-inducible factor-1 alpha (HIF1α), and DNA damage–inducible transcript 4 gene (DDIT4) was analyzed. Thereafter, the expression of Smurf2, YY1, HIF1α, and DDIT4 was altered in the MCAO mice and OGD-treated neurons. Apoptosis in tissues and cerebral infarction were assessed. In neurons, the expression of apoptosis-related proteins, viability, and apoptosis were assessed, followed by evaluation of lactate dehydrogenase leakage rate. The interaction between Smurf2 and YY1 was analyzed by coimmunoprecipitation assay and that between YY1 ubiquitination by in vivo ubiquitination experiment. The results showed downregulation of Smurf2 and upregulation of YY1, HIF1α, and DDIT4 in both MCAO mice and OGD-treated neurons. Smurf2 elevated YY1 ubiquitination and degradation, and YY1 increased HIF1α expression to promote DDIT4 in neurons. Overexpressed Smurf2 or downregulated YY1, HIF1α, or DDIT4 reduced the volume of cerebral infarction and apoptosis in MCAO mice, while enhancing cell viability and reducing apoptosis and lactate dehydrogenase leakage in OGD-treated neurons. In summary, our findings elucidated a neuroprotective role of Smurf2 in cerebral ischemic injury via inactivation of the YY1/HIF1α/DDIT4 axis. American Society for Biochemistry and Molecular Biology 2021-03-12 /pmc/articles/PMC8363835/ /pubmed/33722608 http://dx.doi.org/10.1016/j.jbc.2021.100537 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Liu, Haibin
Sun, Shengtao
Liu, Bing
Smurf2 exerts neuroprotective effects on cerebral ischemic injury
title Smurf2 exerts neuroprotective effects on cerebral ischemic injury
title_full Smurf2 exerts neuroprotective effects on cerebral ischemic injury
title_fullStr Smurf2 exerts neuroprotective effects on cerebral ischemic injury
title_full_unstemmed Smurf2 exerts neuroprotective effects on cerebral ischemic injury
title_short Smurf2 exerts neuroprotective effects on cerebral ischemic injury
title_sort smurf2 exerts neuroprotective effects on cerebral ischemic injury
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363835/
https://www.ncbi.nlm.nih.gov/pubmed/33722608
http://dx.doi.org/10.1016/j.jbc.2021.100537
work_keys_str_mv AT liuhaibin smurf2exertsneuroprotectiveeffectsoncerebralischemicinjury
AT sunshengtao smurf2exertsneuroprotectiveeffectsoncerebralischemicinjury
AT liubing smurf2exertsneuroprotectiveeffectsoncerebralischemicinjury