Cargando…

GPN-1/glypican and UNC-52/perlecan do not appear to function in BMP signaling to pattern the C. elegans postembryonic mesoderm

Heparan sulfate proteoglycans (HSPGs) are diverse macromolecules consisting of a protein core modified with glycosaminoglycan (GAG) chains. HSPGs, including glypicans and perlecans, have been implicated in shaping the extracellular matrix (ECM) to affect growth factor signaling. Here, we tested if G...

Descripción completa

Detalles Bibliográficos
Autores principales: DeGroot, Melisa S, Greer, Robert, Liu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Caltech Library 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363907/
https://www.ncbi.nlm.nih.gov/pubmed/34405137
http://dx.doi.org/10.17912/micropub.biology.000437
Descripción
Sumario:Heparan sulfate proteoglycans (HSPGs) are diverse macromolecules consisting of a protein core modified with glycosaminoglycan (GAG) chains. HSPGs, including glypicans and perlecans, have been implicated in shaping the extracellular matrix (ECM) to affect growth factor signaling. Here, we tested if GPN-1/glypicanor UNC-52/perlecan plays a role in the bone morphogenetic protein (BMP) signaling pathway in patterning the C. elegans postembryonic mesoderm. Using the suppression of sma-9(0) (Susm)assay, we found that animals carrying mutant alleles of gpn-1 or unc-52 do not exhibit any Susm phenotype. We also tested and found that the two glypicans GPN-1 and LON-2 do not share functional redundancy in the BMP pathway. Our results suggest that GPN-1/glypican and UNC-52/perlecan do not play a major role in the C. elegans BMP pathway, at least in patterning of the postembryonic mesoderm.