Cargando…

How multisensory neurons solve causal inference

Sitting in a static railway carriage can produce illusory self-motion if the train on an adjoining track moves off. While our visual system registers motion, vestibular signals indicate that we are stationary. The brain is faced with a difficult challenge: is there a single cause of sensations (I am...

Descripción completa

Detalles Bibliográficos
Autores principales: Rideaux, Reuben, Storrs, Katherine R., Maiello, Guido, Welchman, Andrew E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364184/
https://www.ncbi.nlm.nih.gov/pubmed/34349023
http://dx.doi.org/10.1073/pnas.2106235118
_version_ 1783738487539761152
author Rideaux, Reuben
Storrs, Katherine R.
Maiello, Guido
Welchman, Andrew E.
author_facet Rideaux, Reuben
Storrs, Katherine R.
Maiello, Guido
Welchman, Andrew E.
author_sort Rideaux, Reuben
collection PubMed
description Sitting in a static railway carriage can produce illusory self-motion if the train on an adjoining track moves off. While our visual system registers motion, vestibular signals indicate that we are stationary. The brain is faced with a difficult challenge: is there a single cause of sensations (I am moving) or two causes (I am static, another train is moving)? If a single cause, integrating signals produces a more precise estimate of self-motion, but if not, one cue should be ignored. In many cases, this process of causal inference works without error, but how does the brain achieve it? Electrophysiological recordings show that the macaque medial superior temporal area contains many neurons that encode combinations of vestibular and visual motion cues. Some respond best to vestibular and visual motion in the same direction (“congruent” neurons), while others prefer opposing directions (“opposite” neurons). Congruent neurons could underlie cue integration, but the function of opposite neurons remains a puzzle. Here, we seek to explain this computational arrangement by training a neural network model to solve causal inference for motion estimation. Like biological systems, the model develops congruent and opposite units and recapitulates known behavioral and neurophysiological observations. We show that all units (both congruent and opposite) contribute to motion estimation. Importantly, however, it is the balance between their activity that distinguishes whether visual and vestibular cues should be integrated or separated. This explains the computational purpose of puzzling neural representations and shows how a relatively simple feedforward network can solve causal inference.
format Online
Article
Text
id pubmed-8364184
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-83641842021-08-24 How multisensory neurons solve causal inference Rideaux, Reuben Storrs, Katherine R. Maiello, Guido Welchman, Andrew E. Proc Natl Acad Sci U S A Biological Sciences Sitting in a static railway carriage can produce illusory self-motion if the train on an adjoining track moves off. While our visual system registers motion, vestibular signals indicate that we are stationary. The brain is faced with a difficult challenge: is there a single cause of sensations (I am moving) or two causes (I am static, another train is moving)? If a single cause, integrating signals produces a more precise estimate of self-motion, but if not, one cue should be ignored. In many cases, this process of causal inference works without error, but how does the brain achieve it? Electrophysiological recordings show that the macaque medial superior temporal area contains many neurons that encode combinations of vestibular and visual motion cues. Some respond best to vestibular and visual motion in the same direction (“congruent” neurons), while others prefer opposing directions (“opposite” neurons). Congruent neurons could underlie cue integration, but the function of opposite neurons remains a puzzle. Here, we seek to explain this computational arrangement by training a neural network model to solve causal inference for motion estimation. Like biological systems, the model develops congruent and opposite units and recapitulates known behavioral and neurophysiological observations. We show that all units (both congruent and opposite) contribute to motion estimation. Importantly, however, it is the balance between their activity that distinguishes whether visual and vestibular cues should be integrated or separated. This explains the computational purpose of puzzling neural representations and shows how a relatively simple feedforward network can solve causal inference. National Academy of Sciences 2021-08-10 2021-08-04 /pmc/articles/PMC8364184/ /pubmed/34349023 http://dx.doi.org/10.1073/pnas.2106235118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Rideaux, Reuben
Storrs, Katherine R.
Maiello, Guido
Welchman, Andrew E.
How multisensory neurons solve causal inference
title How multisensory neurons solve causal inference
title_full How multisensory neurons solve causal inference
title_fullStr How multisensory neurons solve causal inference
title_full_unstemmed How multisensory neurons solve causal inference
title_short How multisensory neurons solve causal inference
title_sort how multisensory neurons solve causal inference
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364184/
https://www.ncbi.nlm.nih.gov/pubmed/34349023
http://dx.doi.org/10.1073/pnas.2106235118
work_keys_str_mv AT rideauxreuben howmultisensoryneuronssolvecausalinference
AT storrskatheriner howmultisensoryneuronssolvecausalinference
AT maielloguido howmultisensoryneuronssolvecausalinference
AT welchmanandrewe howmultisensoryneuronssolvecausalinference