Cargando…
Epidemic mitigation by statistical inference from contact tracing data
Contact tracing is an essential tool to mitigate the impact of a pandemic, such as the COVID-19 pandemic. In order to achieve efficient and scalable contact tracing in real time, digital devices can play an important role. While a lot of attention has been paid to analyzing the privacy and ethical r...
Autores principales: | Baker, Antoine, Biazzo, Indaco, Braunstein, Alfredo, Catania, Giovanni, Dall’Asta, Luca, Ingrosso, Alessandro, Krzakala, Florent, Mazza, Fabio, Mézard, Marc, Muntoni, Anna Paola, Refinetti, Maria, Sarao Mannelli, Stefano, Zdeborová, Lenka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364197/ https://www.ncbi.nlm.nih.gov/pubmed/34312253 http://dx.doi.org/10.1073/pnas.2106548118 |
Ejemplares similares
-
A Bayesian generative neural network framework for epidemic inference problems
por: Biazzo, Indaco, et al.
Publicado: (2022) -
Inference in conditioned dynamics through causality restoration
por: Braunstein, Alfredo, et al.
Publicado: (2023) -
Bayesian reconstruction of memories stored in neural networks from their connectivity
por: Goldt, Sebastian, et al.
Publicado: (2023) -
Statistical Physics, Optimization, Inference, and Message-Passing Algorithms : Lecture Notes of the Les Houches School of Physics : Special Issue, October 2013
por: Krzakala, Florent, et al.
Publicado: (2015) -
Optimal errors and phase transitions in high-dimensional generalized linear models
por: Barbier, Jean, et al.
Publicado: (2019)