Cargando…
Deep learning‐based synthetic CT generation for MR‐only radiotherapy of prostate cancer patients with 0.35T MRI linear accelerator
PURPOSE: To develop a deep learning model to generate synthetic CT for MR‐only radiotherapy of prostate cancer patients treated with 0.35 T MRI linear accelerator. MATERIALS AND METHODS: A U‐NET convolutional neural network was developed to translate 0.35 T TRUFI MRI into electron density map using...
Autores principales: | Farjam, Reza, Nagar, Himanshu, Kathy Zhou, Xi, Ouellette, David, Chiara Formenti, Silvia, DeWyngaert, J. Keith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364266/ https://www.ncbi.nlm.nih.gov/pubmed/34184390 http://dx.doi.org/10.1002/acm2.13327 |
Ejemplares similares
-
Quantifying the impact of SpaceOAR hydrogel on inter‐fractional rectal and bladder dose during 0.35 T MR‐guided prostate adaptive radiotherapy
por: Farjam, Reza, et al.
Publicado: (2021) -
A clinical validation of the MR‐compatible Delta(4) QA system in a 0.35 tesla MR linear accelerator
por: Desai, Vimal, et al.
Publicado: (2021) -
Dosimetric evaluation of an atlas‐based synthetic CT generation approach for MR‐only radiotherapy of pelvis anatomy
por: Farjam, Reza, et al.
Publicado: (2018) -
An independent Monte Carlo–based IMRT QA tool for a 0.35 T MRI‐guided linear accelerator
por: Khan, Ahtesham Ullah, et al.
Publicado: (2022) -
Commissioning a secondary dose calculation software for a 0.35 T MR‐linac
por: Price, Alex T., et al.
Publicado: (2022)