Cargando…
The root cause analysis on failed patient‐specific measurements of pencil beam scanning protons using a 2D detection array with finite size ionization chambers
The aim of this report is to present the root cause analysis on failed patient‐specific quality assurance (QA) measurements of pencil beam scanning (PBS) protons; referred to as PBS‐QA measurement. A criterion to fail a PBS‐QA measurement is having a <95% passing rate in a 3.0%‐3.0 mm gamma index...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364270/ https://www.ncbi.nlm.nih.gov/pubmed/34312997 http://dx.doi.org/10.1002/acm2.13343 |
Sumario: | The aim of this report is to present the root cause analysis on failed patient‐specific quality assurance (QA) measurements of pencil beam scanning (PBS) protons; referred to as PBS‐QA measurement. A criterion to fail a PBS‐QA measurement is having a <95% passing rate in a 3.0%‐3.0 mm gamma index analysis. Clinically, we use a two‐dimensional (2D) gamma index analysis to obtain the passing rate. The IBA MatriXX PT 2D detection array with finite size ionization chamber was utilized. A total of 2488 measurements performed in our PBS beamline were cataloged. The percentage of measurements for the sites of head/neck, breast, prostate, and other are 53.3%, 22.7%, 10.5%, and 13.5%, respectively. The measurements with a passing rate of 100 to >94%, 94 to >88%, and <88% were 93.6%, 5.6%, and 0.8%, respectively. The percentage of failed measurements with a <95% passing rate was 10.9%. After removed the user errors of either re‐measurement or re‐analysis, 8.1% became acceptable. We observed a feature of >3% per mm dose gradient with respect to depth on the failed measurements. We utilized a 2D/three‐dimensional (3D) gamma index analysis toolkit to investigate the effect of depth dose gradient. By utilizing this 3D toolkit, 43.1% of the failed measurements were improved. A feature among measurements that remained sub‐optimal after re‐analysis was a sharp >3% per mm lateral dose gradient that may not be well handled using the detector size of 5.0 mm in‐diameter. An analysis of the sampling of finite size detectors using one‐dimensional (1D) error function showed a large dose deviation at locations of low‐dose areas between two high‐dose plateaus. User error, large depth dose gradient, and the effect of detector size are identified as root causes. With the mitigation of the root causes, the goals of patient‐specific QA, specifically detecting actual deviation of beam delivery or identifying limitations of the dose calculation algorithm of the treatment planning system, can be directly related to failure of the PBS‐QA measurements. |
---|