Cargando…
A sensitivity analysis of probability maps in deep‐learning‐based anatomical segmentation
PURPOSE: Deep‐learning‐based segmentation models implicitly learn to predict the presence of a structure based on its overall prominence in the training dataset. This phenomenon is observed and accounted for in deep‐learning applications such as natural language processing but is often neglected in...
Autores principales: | Bice, Noah, Kirby, Neil, Li, Ruiqi, Nguyen, Dan, Bahr, Tyler, Kabat, Christopher, Myers, Pamela, Papanikolaou, Niko, Fakhreddine, Mohamad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364283/ https://www.ncbi.nlm.nih.gov/pubmed/34231950 http://dx.doi.org/10.1002/acm2.13331 |
Ejemplares similares
-
Deep learning‐based survival analysis for brain metastasis patients with the national cancer database
por: Bice, Noah, et al.
Publicado: (2020) -
Machine learning models to predict the delivered positions of Elekta multileaf collimator leaves for volumetric modulated arc therapy
por: Sivabhaskar, Sruthi, et al.
Publicado: (2022) -
A method to predict patient‐specific table coordinates for quality assurance in external beam radiation therapy
por: Saenz, Daniel L., et al.
Publicado: (2018) -
An open‐source tool to visualize potential cone collisions while planning SRS cases
por: Licon, Anna Laura, et al.
Publicado: (2020) -
Patient‐specific dose quality assurance of single‐isocenter multiple brain metastasis stereotactic radiosurgery using PTW Octavius 4D
por: McCulloch, James, et al.
Publicado: (2020)