Cargando…
Data-driven identification of temporal glucose patterns in a large cohort of nondiabetic patients with COVID-19 using time-series clustering
OBJECTIVE: Hyperglycemia has emerged as an important clinical manifestation of coronavirus disease 2019 (COVID-19) in diabetic and nondiabetic patients. Whether these glycemic changes are specific to a subgroup of patients and persist following COVID-19 resolution remains to be elucidated. This work...
Autores principales: | Mistry, Sejal, Gouripeddi, Ramkiran, Facelli, Julio C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364667/ https://www.ncbi.nlm.nih.gov/pubmed/34409266 http://dx.doi.org/10.1093/jamiaopen/ooab063 |
Ejemplares similares
-
Erratum to: Data-driven identification of temporal glucose patterns in a large cohort of nondiabetic patients with COVID-19 using time-series clustering
por: Mistry, Sejal, et al.
Publicado: (2021) -
27337 Characterizing Temporal Patterns in Glucose Dysregulation Following SARS-CoV-2 Infection
por: Mistry, Sejal, et al.
Publicado: (2021) -
297 Identifying Opportunities and Challenges for Translational Informatics Approaches to Real-World Data: A Diabetes Case Study
por: Mistry, Sejal, et al.
Publicado: (2023) -
Detecting hypoglycemia-induced electrocardiogram changes in a rodent model of type 1 diabetes using shape-based clustering
por: Mistry, Sejal, et al.
Publicado: (2023) -
Human activity pattern implications for modeling SARS-CoV-2 transmission
por: Wang, Yulan, et al.
Publicado: (2021)