Cargando…
A nitroxides-based macromolecular MRI contrast agent with an extraordinary longitudinal relaxivity for tumor imaging via clinical T1WI SE sequence
BACKGROUND: Macromoleculization of nitroxides has been an effective strategy to improve low relaxivities and poor in vivo stability, however, nitroxides-based metal-free magnetic resonance imaging (MRI) macromolecular contrast agents (mCAs) are still under-performed. These mCAs do not possess a high...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364710/ https://www.ncbi.nlm.nih.gov/pubmed/34391417 http://dx.doi.org/10.1186/s12951-021-00990-6 |
Sumario: | BACKGROUND: Macromoleculization of nitroxides has been an effective strategy to improve low relaxivities and poor in vivo stability, however, nitroxides-based metal-free magnetic resonance imaging (MRI) macromolecular contrast agents (mCAs) are still under-performed. These mCAs do not possess a high nitroxides content sufficient for a cumulative effect. Amphiphilic nanostructures in these mCAs are not stable enough for highly efficient protection of nitroxides and do not have adequate molecular flexibility for full contact of the paramagnetic center with the peripheral water molecules. In addition, these mCAs still raise the concerns over biocompatibility and biodegradability due to the presence of macromolecules in these mCAs. RESULTS: Herein, a water-soluble biodegradable nitroxides-based mCA (Linear pDHPMA-mPEG-Ppa-PROXYL) was prepared via covalent conjugation of a nitroxides (2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl, PROXYL) onto an enzyme-sensitive linear di-block poly[N-(1, 3-dihydroxypropyl) methacrylamide] (pDHPMA). A high content of PROXYL up to 0.111 mmol/g in Linear pDHPMA-mPEG-Ppa-PROXYL was achieved and a stable nano-sized self-assembled aggregate in an aqueous environment (ca. 23 nm) was formed. Its longitudinal relaxivity (r(1) = 0.93 mM(− 1) s(− 1)) was the highest compared to reported nitroxides-based mCAs. The blood retention time of PROXYL from the prepared mCA in vivo was up to ca. 8 h and great accumulation of the mCA was realized in the tumor site due to its passive targeting ability to tumors. Thus, Linear pDHPMA-mPEG-Ppa-PROXYL could provide a clearly detectable MRI enhancement at the tumor site of mice via the T1WI SE sequence conventionally used in clinical Gd(3+)-based contrast agents, although it cannot be compared with DTPA-Gd in the longitudinal relaxivity and the continuous enhancement time at the tumor site of mice. Additionally, it was demonstrated to have great biosafety, hemocompatibility and biocompatibility. CONCLUSIONS: Therefore, Linear pDHPMA-mPEG-Ppa-PROXYL could be a potential candidate as a substitute of metal-based MRI CAs for clinical application. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-021-00990-6. |
---|