Cargando…
Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements
BACKGROUND: Measuring mammals’ bite force in laboratory conditions is not a simple task, let alone on wild medium-sized mammals in the field. Thus, morphometric-proxies are usually used to infer morphofunctional properties of musculoskeletal features. For instance, the study of bite force-indexes su...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364746/ https://www.ncbi.nlm.nih.gov/pubmed/34447633 http://dx.doi.org/10.7717/peerj.11948 |
_version_ | 1783738578155601920 |
---|---|
author | Sicuro, Fernando L. Oliveira, Luiz Flamarion B. Hendges, Carla D. Fonseca, Carlos |
author_facet | Sicuro, Fernando L. Oliveira, Luiz Flamarion B. Hendges, Carla D. Fonseca, Carlos |
author_sort | Sicuro, Fernando L. |
collection | PubMed |
description | BACKGROUND: Measuring mammals’ bite force in laboratory conditions is not a simple task, let alone on wild medium-sized mammals in the field. Thus, morphometric-proxies are usually used to infer morphofunctional properties of musculoskeletal features. For instance, the study of bite force-indexes suggests that different capacities to crack food items reduce the competition between coexistent collared and white-lipped peccaries (Pecari tajacu and Tayassu pecari). The presence of exotic feral hogs (Sus scrofa) in peccaries’ endemic areas gives rise to new ecological interactions between them. An example is the Brazilian Pantanal wetland, where ecomorphological mechanisms may play a role in their ecological relations. Taking this scenario as a case of study, we aimed to verify if the morphometric-proxies are de facto reliable tools, by comparing bite forces-indexes with the in vivo bite forces of these species. METHODS: We captured 21 collared and white-lipped peccaries and feral hogs in the Brazilian Pantanal to assess their bite force at first molar. The Bite Force Measuring Tube (BiTu) is a robust and simple mechanical device designed to be used in field conditions. Only 11 individuals successfully bit the BiTu before being released. Their body measurements were compared and correlated with their bite force. The in vivo bite forces were compared with bite force-indexes of two papers based on independent morphometric methods and datasets: Sicuro & Oliveira (2002) used classic morphometrics to infer the bite forces of these three species in the Brazilian Pantanal, and Hendges et al. (2019) used geometric morphometrics to compare bite forces-indexes and feeding habits of the extant peccary species. The results of all species were standardized (Z-curves) according to each method. Doing so, we obtained comparable dimensionless comparable values but maintaining the differences between them. RESULTS: The morphometric-proxies-based studies presented similar results: collared peccaries present weaker bites than white-lipped peccaries and feral hogs, while these two species presented no significant differences in their bite force-indexes. The in vivo bite force results suggest the same relations predicted by the morphometric models, including the high variation among the feral hogs. We found a significant correlation between the individuals’ weight (kg) and their actual bite force (N) but no significant correlations with the head length. CONCLUSIONS: The BiTu proved to be a functional and low-cost tool to measure bite force in field conditions. The in vivo results presented a good correspondence with the predictions based on morphometric-proxies by Sicuro & Oliveira (2002) and Hendges et al. (2019). The results denote that these studies succeed in capturing the biomechanical signal of the three species’ skull-jaw systems. This empirical validation confirms that these morphometric-proxies analyses are reliable methods to ecomorphological and evolutionary inferences. |
format | Online Article Text |
id | pubmed-8364746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83647462021-08-25 Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements Sicuro, Fernando L. Oliveira, Luiz Flamarion B. Hendges, Carla D. Fonseca, Carlos PeerJ Animal Behavior BACKGROUND: Measuring mammals’ bite force in laboratory conditions is not a simple task, let alone on wild medium-sized mammals in the field. Thus, morphometric-proxies are usually used to infer morphofunctional properties of musculoskeletal features. For instance, the study of bite force-indexes suggests that different capacities to crack food items reduce the competition between coexistent collared and white-lipped peccaries (Pecari tajacu and Tayassu pecari). The presence of exotic feral hogs (Sus scrofa) in peccaries’ endemic areas gives rise to new ecological interactions between them. An example is the Brazilian Pantanal wetland, where ecomorphological mechanisms may play a role in their ecological relations. Taking this scenario as a case of study, we aimed to verify if the morphometric-proxies are de facto reliable tools, by comparing bite forces-indexes with the in vivo bite forces of these species. METHODS: We captured 21 collared and white-lipped peccaries and feral hogs in the Brazilian Pantanal to assess their bite force at first molar. The Bite Force Measuring Tube (BiTu) is a robust and simple mechanical device designed to be used in field conditions. Only 11 individuals successfully bit the BiTu before being released. Their body measurements were compared and correlated with their bite force. The in vivo bite forces were compared with bite force-indexes of two papers based on independent morphometric methods and datasets: Sicuro & Oliveira (2002) used classic morphometrics to infer the bite forces of these three species in the Brazilian Pantanal, and Hendges et al. (2019) used geometric morphometrics to compare bite forces-indexes and feeding habits of the extant peccary species. The results of all species were standardized (Z-curves) according to each method. Doing so, we obtained comparable dimensionless comparable values but maintaining the differences between them. RESULTS: The morphometric-proxies-based studies presented similar results: collared peccaries present weaker bites than white-lipped peccaries and feral hogs, while these two species presented no significant differences in their bite force-indexes. The in vivo bite force results suggest the same relations predicted by the morphometric models, including the high variation among the feral hogs. We found a significant correlation between the individuals’ weight (kg) and their actual bite force (N) but no significant correlations with the head length. CONCLUSIONS: The BiTu proved to be a functional and low-cost tool to measure bite force in field conditions. The in vivo results presented a good correspondence with the predictions based on morphometric-proxies by Sicuro & Oliveira (2002) and Hendges et al. (2019). The results denote that these studies succeed in capturing the biomechanical signal of the three species’ skull-jaw systems. This empirical validation confirms that these morphometric-proxies analyses are reliable methods to ecomorphological and evolutionary inferences. PeerJ Inc. 2021-08-12 /pmc/articles/PMC8364746/ /pubmed/34447633 http://dx.doi.org/10.7717/peerj.11948 Text en ©2021 Sicuro et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Animal Behavior Sicuro, Fernando L. Oliveira, Luiz Flamarion B. Hendges, Carla D. Fonseca, Carlos Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
title | Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
title_full | Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
title_fullStr | Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
title_full_unstemmed | Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
title_short | Quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
title_sort | quantifying bite force in coexisting tayassuids and feral suids: a comparison between morphometric functional proxies and in vivo measurements |
topic | Animal Behavior |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364746/ https://www.ncbi.nlm.nih.gov/pubmed/34447633 http://dx.doi.org/10.7717/peerj.11948 |
work_keys_str_mv | AT sicurofernandol quantifyingbiteforceincoexistingtayassuidsandferalsuidsacomparisonbetweenmorphometricfunctionalproxiesandinvivomeasurements AT oliveiraluizflamarionb quantifyingbiteforceincoexistingtayassuidsandferalsuidsacomparisonbetweenmorphometricfunctionalproxiesandinvivomeasurements AT hendgescarlad quantifyingbiteforceincoexistingtayassuidsandferalsuidsacomparisonbetweenmorphometricfunctionalproxiesandinvivomeasurements AT fonsecacarlos quantifyingbiteforceincoexistingtayassuidsandferalsuidsacomparisonbetweenmorphometricfunctionalproxiesandinvivomeasurements |