Cargando…
Corn Yield Prediction With Ensemble CNN-DNN
We investigate the predictive performance of two novel CNN-DNN machine learning ensemble models in predicting county-level corn yields across the US Corn Belt (12 states). The developed data set is a combination of management, environment, and historical corn yields from 1980 to 2019. Two scenarios...
Autores principales: | Shahhosseini, Mohsen, Hu, Guiping, Khaki, Saeed, Archontoulis, Sotirios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364956/ https://www.ncbi.nlm.nih.gov/pubmed/34408763 http://dx.doi.org/10.3389/fpls.2021.709008 |
Ejemplares similares
-
Forecasting Corn Yield With Machine Learning Ensembles
por: Shahhosseini, Mohsen, et al.
Publicado: (2020) -
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020) -
County-scale crop yield prediction by integrating crop simulation with machine learning models
por: Sajid, Saiara Samira, et al.
Publicado: (2022) -
Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
por: Shahhosseini, Mohsen, et al.
Publicado: (2021) -
Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation
por: Puntel, Laila A., et al.
Publicado: (2016)