Cargando…
TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells
SARS‐CoV‐2 is a newly emerged coronavirus that caused the global COVID‐19 outbreak in early 2020. COVID‐19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS‐CoV‐2–host cell interaction...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365257/ https://www.ncbi.nlm.nih.gov/pubmed/34159616 http://dx.doi.org/10.15252/embj.2021107821 |
_version_ | 1783738671487254528 |
---|---|
author | Koch, Jana Uckeley, Zina M Doldan, Patricio Stanifer, Megan Boulant, Steeve Lozach, Pierre‐Yves |
author_facet | Koch, Jana Uckeley, Zina M Doldan, Patricio Stanifer, Megan Boulant, Steeve Lozach, Pierre‐Yves |
author_sort | Koch, Jana |
collection | PubMed |
description | SARS‐CoV‐2 is a newly emerged coronavirus that caused the global COVID‐19 outbreak in early 2020. COVID‐19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS‐CoV‐2–host cell interactions and entry mechanisms remain poorly understood. Investigating SARS‐CoV‐2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS‐CoV‐2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH‐independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS‐CoV‐2 entered the cytosol via acid‐activated cathepsin L protease 40–60 min post‐infection. Overexpression of TMPRSS2 in non‐TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS‐CoV‐2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS‐CoV‐2 sorting into either pathway. |
format | Online Article Text |
id | pubmed-8365257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83652572021-08-27 TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells Koch, Jana Uckeley, Zina M Doldan, Patricio Stanifer, Megan Boulant, Steeve Lozach, Pierre‐Yves EMBO J Articles SARS‐CoV‐2 is a newly emerged coronavirus that caused the global COVID‐19 outbreak in early 2020. COVID‐19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS‐CoV‐2–host cell interactions and entry mechanisms remain poorly understood. Investigating SARS‐CoV‐2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS‐CoV‐2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH‐independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS‐CoV‐2 entered the cytosol via acid‐activated cathepsin L protease 40–60 min post‐infection. Overexpression of TMPRSS2 in non‐TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS‐CoV‐2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS‐CoV‐2 sorting into either pathway. John Wiley and Sons Inc. 2021-07-13 2021-08-16 /pmc/articles/PMC8365257/ /pubmed/34159616 http://dx.doi.org/10.15252/embj.2021107821 Text en © 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Koch, Jana Uckeley, Zina M Doldan, Patricio Stanifer, Megan Boulant, Steeve Lozach, Pierre‐Yves TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells |
title | TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells |
title_full | TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells |
title_fullStr | TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells |
title_full_unstemmed | TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells |
title_short | TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells |
title_sort | tmprss2 expression dictates the entry route used by sars‐cov‐2 to infect host cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365257/ https://www.ncbi.nlm.nih.gov/pubmed/34159616 http://dx.doi.org/10.15252/embj.2021107821 |
work_keys_str_mv | AT kochjana tmprss2expressiondictatestheentryrouteusedbysarscov2toinfecthostcells AT uckeleyzinam tmprss2expressiondictatestheentryrouteusedbysarscov2toinfecthostcells AT doldanpatricio tmprss2expressiondictatestheentryrouteusedbysarscov2toinfecthostcells AT stanifermegan tmprss2expressiondictatestheentryrouteusedbysarscov2toinfecthostcells AT boulantsteeve tmprss2expressiondictatestheentryrouteusedbysarscov2toinfecthostcells AT lozachpierreyves tmprss2expressiondictatestheentryrouteusedbysarscov2toinfecthostcells |