Cargando…
Haptoglobin as a Biomarker
Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pleiades Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365284/ https://www.ncbi.nlm.nih.gov/pubmed/34422226 http://dx.doi.org/10.1134/S1990750821030069 |
_version_ | 1783738676865400832 |
---|---|
author | Naryzny, S. N. Legina, O. K. |
author_facet | Naryzny, S. N. Legina, O. K. |
author_sort | Naryzny, S. N. |
collection | PubMed |
description | Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies. |
format | Online Article Text |
id | pubmed-8365284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Pleiades Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-83652842021-08-16 Haptoglobin as a Biomarker Naryzny, S. N. Legina, O. K. Biochem Mosc Suppl B Biomed Chem Article Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies. Pleiades Publishing 2021-08-16 2021 /pmc/articles/PMC8365284/ /pubmed/34422226 http://dx.doi.org/10.1134/S1990750821030069 Text en © Pleiades Publishing, Ltd. 2021, ISSN 1990-7508, Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2021, Vol. 15, No. 3, pp. 184–198. © Pleiades Publishing, Ltd., 2021.Russian Text © The Author(s), 2021, published in Biomeditsinskaya Khimiya. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Naryzny, S. N. Legina, O. K. Haptoglobin as a Biomarker |
title | Haptoglobin as a Biomarker |
title_full | Haptoglobin as a Biomarker |
title_fullStr | Haptoglobin as a Biomarker |
title_full_unstemmed | Haptoglobin as a Biomarker |
title_short | Haptoglobin as a Biomarker |
title_sort | haptoglobin as a biomarker |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365284/ https://www.ncbi.nlm.nih.gov/pubmed/34422226 http://dx.doi.org/10.1134/S1990750821030069 |
work_keys_str_mv | AT naryznysn haptoglobinasabiomarker AT leginaok haptoglobinasabiomarker |