Cargando…
A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630
Genome engineering of Rhodococcus opacus PD630, an important microorganism used for the bioconversion of lignin, is currently dependent on inefficient homologous recombination. Although a CRISPR interference procedure for gene repression has previously been developed for R. opacus PD630, a CRISPR/Ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365321/ https://www.ncbi.nlm.nih.gov/pubmed/34430726 http://dx.doi.org/10.1016/j.synbio.2021.08.001 |
_version_ | 1783738685112451072 |
---|---|
author | Liang, Youxiang Wei, Yuwen Jiao, Song Yu, Huimin |
author_facet | Liang, Youxiang Wei, Yuwen Jiao, Song Yu, Huimin |
author_sort | Liang, Youxiang |
collection | PubMed |
description | Genome engineering of Rhodococcus opacus PD630, an important microorganism used for the bioconversion of lignin, is currently dependent on inefficient homologous recombination. Although a CRISPR interference procedure for gene repression has previously been developed for R. opacus PD630, a CRISPR/Cas9 system for gene knockout has yet to be reported for the strain. In this study, we found that the cytotoxicity of Cas9 and the deficiency in pathways for repairing DNA double-strand breaks (DSBs) were the major causes of the failure of conventional CRISPR/Cas9 technologies in R. opacus, even when augmented with the recombinases Che9c60 and Che9c61. We successfully developed an efficient single-stranded DNA (ssDNA) recombineering system coupled with CRISPR/Cas9 counter-selection, which facilitated rapid and scarless editing of the R. opacus genome. A two-plasmid system, comprising Cas9 driven by a weak Rhodococcus promoter Pniami, designed to prevent cytotoxicity, and a single-guide RNA (sgRNA) under the control of a strong constitutive promoter, was proven to be appropriate with respect to cleavage function. A novel recombinase, RrRecT derived from a Rhodococcus ruber prophage, was identified for the first time, which facilitated recombination of short ssDNA donors (40–80 nt) targeted to the lagging strand and enabled us to obtain a recombination efficiency up to 10(3)-fold higher than that of endogenous pathways. Finally, by incorporating RrRecT and Cas9 into a single plasmid and then co-transforming cells with sgRNA plasmids and short ssDNA donors, we efficiently achieved gene disruption and base mutation in R. opacus, with editing efficiencies ranging from 22 % to 100 %. Simultaneous disruption of double genes was also confirmed, although at a lower efficiency. This effective genome editing tool will accelerate the engineering of R. opacus metabolism. |
format | Online Article Text |
id | pubmed-8365321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-83653212021-08-23 A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 Liang, Youxiang Wei, Yuwen Jiao, Song Yu, Huimin Synth Syst Biotechnol Article Genome engineering of Rhodococcus opacus PD630, an important microorganism used for the bioconversion of lignin, is currently dependent on inefficient homologous recombination. Although a CRISPR interference procedure for gene repression has previously been developed for R. opacus PD630, a CRISPR/Cas9 system for gene knockout has yet to be reported for the strain. In this study, we found that the cytotoxicity of Cas9 and the deficiency in pathways for repairing DNA double-strand breaks (DSBs) were the major causes of the failure of conventional CRISPR/Cas9 technologies in R. opacus, even when augmented with the recombinases Che9c60 and Che9c61. We successfully developed an efficient single-stranded DNA (ssDNA) recombineering system coupled with CRISPR/Cas9 counter-selection, which facilitated rapid and scarless editing of the R. opacus genome. A two-plasmid system, comprising Cas9 driven by a weak Rhodococcus promoter Pniami, designed to prevent cytotoxicity, and a single-guide RNA (sgRNA) under the control of a strong constitutive promoter, was proven to be appropriate with respect to cleavage function. A novel recombinase, RrRecT derived from a Rhodococcus ruber prophage, was identified for the first time, which facilitated recombination of short ssDNA donors (40–80 nt) targeted to the lagging strand and enabled us to obtain a recombination efficiency up to 10(3)-fold higher than that of endogenous pathways. Finally, by incorporating RrRecT and Cas9 into a single plasmid and then co-transforming cells with sgRNA plasmids and short ssDNA donors, we efficiently achieved gene disruption and base mutation in R. opacus, with editing efficiencies ranging from 22 % to 100 %. Simultaneous disruption of double genes was also confirmed, although at a lower efficiency. This effective genome editing tool will accelerate the engineering of R. opacus metabolism. KeAi Publishing 2021-08-10 /pmc/articles/PMC8365321/ /pubmed/34430726 http://dx.doi.org/10.1016/j.synbio.2021.08.001 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Liang, Youxiang Wei, Yuwen Jiao, Song Yu, Huimin A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 |
title | A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 |
title_full | A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 |
title_fullStr | A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 |
title_full_unstemmed | A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 |
title_short | A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Rhodococcus opacus PD630 |
title_sort | crispr/cas9-based single-stranded dna recombineering system for genome editing of rhodococcus opacus pd630 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365321/ https://www.ncbi.nlm.nih.gov/pubmed/34430726 http://dx.doi.org/10.1016/j.synbio.2021.08.001 |
work_keys_str_mv | AT liangyouxiang acrisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT weiyuwen acrisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT jiaosong acrisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT yuhuimin acrisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT liangyouxiang crisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT weiyuwen crisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT jiaosong crisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 AT yuhuimin crisprcas9basedsinglestrandeddnarecombineeringsystemforgenomeeditingofrhodococcusopacuspd630 |