Cargando…
A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep l...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365370/ https://www.ncbi.nlm.nih.gov/pubmed/34391094 http://dx.doi.org/10.1016/j.ebiom.2021.103522 |
_version_ | 1783738694177390592 |
---|---|
author | Zhong, Lianzhen Dong, Di Fang, Xueliang Zhang, Fan Zhang, Ning Zhang, Liwen Fang, Mengjie Jiang, Wei Liang, Shaobo Li, Cong Liu, Yujia Zhao, Xun Cao, Runnan Shan, Hong Hu, Zhenhua Ma, Jun Tang, Linglong Tian, Jie |
author_facet | Zhong, Lianzhen Dong, Di Fang, Xueliang Zhang, Fan Zhang, Ning Zhang, Liwen Fang, Mengjie Jiang, Wei Liang, Shaobo Li, Cong Liu, Yujia Zhao, Xun Cao, Runnan Shan, Hong Hu, Zhenhua Ma, Jun Tang, Linglong Tian, Jie |
author_sort | Zhong, Lianzhen |
collection | PubMed |
description | BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC. METHODS: A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator. FINDINGS: The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters. INTERPRETATION: Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC. FUNDING: National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS. |
format | Online Article Text |
id | pubmed-8365370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-83653702021-08-23 A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study Zhong, Lianzhen Dong, Di Fang, Xueliang Zhang, Fan Zhang, Ning Zhang, Liwen Fang, Mengjie Jiang, Wei Liang, Shaobo Li, Cong Liu, Yujia Zhao, Xun Cao, Runnan Shan, Hong Hu, Zhenhua Ma, Jun Tang, Linglong Tian, Jie EBioMedicine Research Paper BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC. METHODS: A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator. FINDINGS: The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters. INTERPRETATION: Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC. FUNDING: National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS. Elsevier 2021-08-11 /pmc/articles/PMC8365370/ /pubmed/34391094 http://dx.doi.org/10.1016/j.ebiom.2021.103522 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Zhong, Lianzhen Dong, Di Fang, Xueliang Zhang, Fan Zhang, Ning Zhang, Liwen Fang, Mengjie Jiang, Wei Liang, Shaobo Li, Cong Liu, Yujia Zhao, Xun Cao, Runnan Shan, Hong Hu, Zhenhua Ma, Jun Tang, Linglong Tian, Jie A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study |
title | A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study |
title_full | A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study |
title_fullStr | A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study |
title_full_unstemmed | A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study |
title_short | A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study |
title_sort | deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365370/ https://www.ncbi.nlm.nih.gov/pubmed/34391094 http://dx.doi.org/10.1016/j.ebiom.2021.103522 |
work_keys_str_mv | AT zhonglianzhen adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT dongdi adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT fangxueliang adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhangfan adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhangning adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhangliwen adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT fangmengjie adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT jiangwei adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT liangshaobo adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT licong adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT liuyujia adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhaoxun adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT caorunnan adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT shanhong adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT huzhenhua adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT majun adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT tanglinglong adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT tianjie adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhonglianzhen deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT dongdi deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT fangxueliang deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhangfan deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhangning deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhangliwen deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT fangmengjie deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT jiangwei deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT liangshaobo deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT licong deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT liuyujia deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT zhaoxun deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT caorunnan deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT shanhong deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT huzhenhua deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT majun deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT tanglinglong deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy AT tianjie deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy |