Cargando…

A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study

BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep l...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Lianzhen, Dong, Di, Fang, Xueliang, Zhang, Fan, Zhang, Ning, Zhang, Liwen, Fang, Mengjie, Jiang, Wei, Liang, Shaobo, Li, Cong, Liu, Yujia, Zhao, Xun, Cao, Runnan, Shan, Hong, Hu, Zhenhua, Ma, Jun, Tang, Linglong, Tian, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365370/
https://www.ncbi.nlm.nih.gov/pubmed/34391094
http://dx.doi.org/10.1016/j.ebiom.2021.103522
_version_ 1783738694177390592
author Zhong, Lianzhen
Dong, Di
Fang, Xueliang
Zhang, Fan
Zhang, Ning
Zhang, Liwen
Fang, Mengjie
Jiang, Wei
Liang, Shaobo
Li, Cong
Liu, Yujia
Zhao, Xun
Cao, Runnan
Shan, Hong
Hu, Zhenhua
Ma, Jun
Tang, Linglong
Tian, Jie
author_facet Zhong, Lianzhen
Dong, Di
Fang, Xueliang
Zhang, Fan
Zhang, Ning
Zhang, Liwen
Fang, Mengjie
Jiang, Wei
Liang, Shaobo
Li, Cong
Liu, Yujia
Zhao, Xun
Cao, Runnan
Shan, Hong
Hu, Zhenhua
Ma, Jun
Tang, Linglong
Tian, Jie
author_sort Zhong, Lianzhen
collection PubMed
description BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC. METHODS: A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator. FINDINGS: The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters. INTERPRETATION: Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC. FUNDING: National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.
format Online
Article
Text
id pubmed-8365370
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83653702021-08-23 A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study Zhong, Lianzhen Dong, Di Fang, Xueliang Zhang, Fan Zhang, Ning Zhang, Liwen Fang, Mengjie Jiang, Wei Liang, Shaobo Li, Cong Liu, Yujia Zhao, Xun Cao, Runnan Shan, Hong Hu, Zhenhua Ma, Jun Tang, Linglong Tian, Jie EBioMedicine Research Paper BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC. METHODS: A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator. FINDINGS: The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters. INTERPRETATION: Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC. FUNDING: National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS. Elsevier 2021-08-11 /pmc/articles/PMC8365370/ /pubmed/34391094 http://dx.doi.org/10.1016/j.ebiom.2021.103522 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Zhong, Lianzhen
Dong, Di
Fang, Xueliang
Zhang, Fan
Zhang, Ning
Zhang, Liwen
Fang, Mengjie
Jiang, Wei
Liang, Shaobo
Li, Cong
Liu, Yujia
Zhao, Xun
Cao, Runnan
Shan, Hong
Hu, Zhenhua
Ma, Jun
Tang, Linglong
Tian, Jie
A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
title A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
title_full A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
title_fullStr A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
title_full_unstemmed A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
title_short A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study
title_sort deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365370/
https://www.ncbi.nlm.nih.gov/pubmed/34391094
http://dx.doi.org/10.1016/j.ebiom.2021.103522
work_keys_str_mv AT zhonglianzhen adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT dongdi adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT fangxueliang adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhangfan adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhangning adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhangliwen adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT fangmengjie adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT jiangwei adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT liangshaobo adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT licong adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT liuyujia adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhaoxun adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT caorunnan adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT shanhong adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT huzhenhua adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT majun adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT tanglinglong adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT tianjie adeeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhonglianzhen deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT dongdi deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT fangxueliang deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhangfan deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhangning deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhangliwen deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT fangmengjie deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT jiangwei deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT liangshaobo deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT licong deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT liuyujia deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT zhaoxun deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT caorunnan deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT shanhong deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT huzhenhua deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT majun deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT tanglinglong deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy
AT tianjie deeplearningbasedradiomicnomogramforprognosisandtreatmentdecisioninadvancednasopharyngealcarcinomaamulticentrestudy