Cargando…
A primer on machine learning techniques for genomic applications
High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365460/ https://www.ncbi.nlm.nih.gov/pubmed/34429852 http://dx.doi.org/10.1016/j.csbj.2021.07.021 |
_version_ | 1783738712760254464 |
---|---|
author | Monaco, Alfonso Pantaleo, Ester Amoroso, Nicola Lacalamita, Antonio Lo Giudice, Claudio Fonzino, Adriano Fosso, Bruno Picardi, Ernesto Tangaro, Sabina Pesole, Graziano Bellotti, Roberto |
author_facet | Monaco, Alfonso Pantaleo, Ester Amoroso, Nicola Lacalamita, Antonio Lo Giudice, Claudio Fonzino, Adriano Fosso, Bruno Picardi, Ernesto Tangaro, Sabina Pesole, Graziano Bellotti, Roberto |
author_sort | Monaco, Alfonso |
collection | PubMed |
description | High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available. |
format | Online Article Text |
id | pubmed-8365460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-83654602021-08-23 A primer on machine learning techniques for genomic applications Monaco, Alfonso Pantaleo, Ester Amoroso, Nicola Lacalamita, Antonio Lo Giudice, Claudio Fonzino, Adriano Fosso, Bruno Picardi, Ernesto Tangaro, Sabina Pesole, Graziano Bellotti, Roberto Comput Struct Biotechnol J Review High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available. Research Network of Computational and Structural Biotechnology 2021-07-31 /pmc/articles/PMC8365460/ /pubmed/34429852 http://dx.doi.org/10.1016/j.csbj.2021.07.021 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Monaco, Alfonso Pantaleo, Ester Amoroso, Nicola Lacalamita, Antonio Lo Giudice, Claudio Fonzino, Adriano Fosso, Bruno Picardi, Ernesto Tangaro, Sabina Pesole, Graziano Bellotti, Roberto A primer on machine learning techniques for genomic applications |
title | A primer on machine learning techniques for genomic applications |
title_full | A primer on machine learning techniques for genomic applications |
title_fullStr | A primer on machine learning techniques for genomic applications |
title_full_unstemmed | A primer on machine learning techniques for genomic applications |
title_short | A primer on machine learning techniques for genomic applications |
title_sort | primer on machine learning techniques for genomic applications |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365460/ https://www.ncbi.nlm.nih.gov/pubmed/34429852 http://dx.doi.org/10.1016/j.csbj.2021.07.021 |
work_keys_str_mv | AT monacoalfonso aprimeronmachinelearningtechniquesforgenomicapplications AT pantaleoester aprimeronmachinelearningtechniquesforgenomicapplications AT amorosonicola aprimeronmachinelearningtechniquesforgenomicapplications AT lacalamitaantonio aprimeronmachinelearningtechniquesforgenomicapplications AT logiudiceclaudio aprimeronmachinelearningtechniquesforgenomicapplications AT fonzinoadriano aprimeronmachinelearningtechniquesforgenomicapplications AT fossobruno aprimeronmachinelearningtechniquesforgenomicapplications AT picardiernesto aprimeronmachinelearningtechniquesforgenomicapplications AT tangarosabina aprimeronmachinelearningtechniquesforgenomicapplications AT pesolegraziano aprimeronmachinelearningtechniquesforgenomicapplications AT bellottiroberto aprimeronmachinelearningtechniquesforgenomicapplications AT monacoalfonso primeronmachinelearningtechniquesforgenomicapplications AT pantaleoester primeronmachinelearningtechniquesforgenomicapplications AT amorosonicola primeronmachinelearningtechniquesforgenomicapplications AT lacalamitaantonio primeronmachinelearningtechniquesforgenomicapplications AT logiudiceclaudio primeronmachinelearningtechniquesforgenomicapplications AT fonzinoadriano primeronmachinelearningtechniquesforgenomicapplications AT fossobruno primeronmachinelearningtechniquesforgenomicapplications AT picardiernesto primeronmachinelearningtechniquesforgenomicapplications AT tangarosabina primeronmachinelearningtechniquesforgenomicapplications AT pesolegraziano primeronmachinelearningtechniquesforgenomicapplications AT bellottiroberto primeronmachinelearningtechniquesforgenomicapplications |