Cargando…

A primer on machine learning techniques for genomic applications

High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of...

Descripción completa

Detalles Bibliográficos
Autores principales: Monaco, Alfonso, Pantaleo, Ester, Amoroso, Nicola, Lacalamita, Antonio, Lo Giudice, Claudio, Fonzino, Adriano, Fosso, Bruno, Picardi, Ernesto, Tangaro, Sabina, Pesole, Graziano, Bellotti, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365460/
https://www.ncbi.nlm.nih.gov/pubmed/34429852
http://dx.doi.org/10.1016/j.csbj.2021.07.021
_version_ 1783738712760254464
author Monaco, Alfonso
Pantaleo, Ester
Amoroso, Nicola
Lacalamita, Antonio
Lo Giudice, Claudio
Fonzino, Adriano
Fosso, Bruno
Picardi, Ernesto
Tangaro, Sabina
Pesole, Graziano
Bellotti, Roberto
author_facet Monaco, Alfonso
Pantaleo, Ester
Amoroso, Nicola
Lacalamita, Antonio
Lo Giudice, Claudio
Fonzino, Adriano
Fosso, Bruno
Picardi, Ernesto
Tangaro, Sabina
Pesole, Graziano
Bellotti, Roberto
author_sort Monaco, Alfonso
collection PubMed
description High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available.
format Online
Article
Text
id pubmed-8365460
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-83654602021-08-23 A primer on machine learning techniques for genomic applications Monaco, Alfonso Pantaleo, Ester Amoroso, Nicola Lacalamita, Antonio Lo Giudice, Claudio Fonzino, Adriano Fosso, Bruno Picardi, Ernesto Tangaro, Sabina Pesole, Graziano Bellotti, Roberto Comput Struct Biotechnol J Review High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available. Research Network of Computational and Structural Biotechnology 2021-07-31 /pmc/articles/PMC8365460/ /pubmed/34429852 http://dx.doi.org/10.1016/j.csbj.2021.07.021 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Review
Monaco, Alfonso
Pantaleo, Ester
Amoroso, Nicola
Lacalamita, Antonio
Lo Giudice, Claudio
Fonzino, Adriano
Fosso, Bruno
Picardi, Ernesto
Tangaro, Sabina
Pesole, Graziano
Bellotti, Roberto
A primer on machine learning techniques for genomic applications
title A primer on machine learning techniques for genomic applications
title_full A primer on machine learning techniques for genomic applications
title_fullStr A primer on machine learning techniques for genomic applications
title_full_unstemmed A primer on machine learning techniques for genomic applications
title_short A primer on machine learning techniques for genomic applications
title_sort primer on machine learning techniques for genomic applications
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365460/
https://www.ncbi.nlm.nih.gov/pubmed/34429852
http://dx.doi.org/10.1016/j.csbj.2021.07.021
work_keys_str_mv AT monacoalfonso aprimeronmachinelearningtechniquesforgenomicapplications
AT pantaleoester aprimeronmachinelearningtechniquesforgenomicapplications
AT amorosonicola aprimeronmachinelearningtechniquesforgenomicapplications
AT lacalamitaantonio aprimeronmachinelearningtechniquesforgenomicapplications
AT logiudiceclaudio aprimeronmachinelearningtechniquesforgenomicapplications
AT fonzinoadriano aprimeronmachinelearningtechniquesforgenomicapplications
AT fossobruno aprimeronmachinelearningtechniquesforgenomicapplications
AT picardiernesto aprimeronmachinelearningtechniquesforgenomicapplications
AT tangarosabina aprimeronmachinelearningtechniquesforgenomicapplications
AT pesolegraziano aprimeronmachinelearningtechniquesforgenomicapplications
AT bellottiroberto aprimeronmachinelearningtechniquesforgenomicapplications
AT monacoalfonso primeronmachinelearningtechniquesforgenomicapplications
AT pantaleoester primeronmachinelearningtechniquesforgenomicapplications
AT amorosonicola primeronmachinelearningtechniquesforgenomicapplications
AT lacalamitaantonio primeronmachinelearningtechniquesforgenomicapplications
AT logiudiceclaudio primeronmachinelearningtechniquesforgenomicapplications
AT fonzinoadriano primeronmachinelearningtechniquesforgenomicapplications
AT fossobruno primeronmachinelearningtechniquesforgenomicapplications
AT picardiernesto primeronmachinelearningtechniquesforgenomicapplications
AT tangarosabina primeronmachinelearningtechniquesforgenomicapplications
AT pesolegraziano primeronmachinelearningtechniquesforgenomicapplications
AT bellottiroberto primeronmachinelearningtechniquesforgenomicapplications