Cargando…
A primer on machine learning techniques for genomic applications
High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of...
Autores principales: | Monaco, Alfonso, Pantaleo, Ester, Amoroso, Nicola, Lacalamita, Antonio, Lo Giudice, Claudio, Fonzino, Adriano, Fosso, Bruno, Picardi, Ernesto, Tangaro, Sabina, Pesole, Graziano, Bellotti, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365460/ https://www.ncbi.nlm.nih.gov/pubmed/34429852 http://dx.doi.org/10.1016/j.csbj.2021.07.021 |
Ejemplares similares
-
A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
por: Pantaleo, Ester, et al.
Publicado: (2022) -
Worldwide impact of lifestyle predictors of dementia prevalence: An eXplainable Artificial Intelligence analysis
por: Bellantuono, Loredana, et al.
Publicado: (2022) -
A Dementia mortality rates dataset in Italy (2012–2019)
por: Fania, Alessandro, et al.
Publicado: (2023) -
Artificial Intelligence and Complex Network Approaches Reveal Potential Gene Biomarkers for Hepatocellular Carcinoma
por: Lacalamita, Antonio, et al.
Publicado: (2023) -
REDIdb 3.0: A Comprehensive Collection of RNA Editing Events in Plant Organellar Genomes
por: Lo Giudice, Claudio, et al.
Publicado: (2018)