Cargando…
Machine Learning Emulation of Gravity Wave Drag in Numerical Weather Forecasting
We assess the value of machine learning as an accelerator for the parameterization schemes of operational weather forecasting systems, specifically the parameterization of nonorographic gravity wave drag. Emulators of this scheme can be trained to produce stable and accurate results up to seasonal f...
Autores principales: | Chantry, Matthew, Hatfield, Sam, Dueben, Peter, Polichtchouk, Inna, Palmer, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365632/ https://www.ncbi.nlm.nih.gov/pubmed/34434491 http://dx.doi.org/10.1029/2021MS002477 |
Ejemplares similares
-
A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts
por: Harris, Lucy, et al.
Publicado: (2022) -
Using sub-limb observations to measure gravity waves excited by convection
por: Wright, Corwin J., et al.
Publicado: (2023) -
Weather forecasting /
por: Hodgson, Michael
Publicado: (1999) -
Weather forecast
por: Courtier, P
Publicado: (1994) -
Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space
por: Dittus, Hansjorg, et al.
Publicado: (2008)