Cargando…
Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile)
Tectonic pseudotachylytes are thought to be unique to certain water‐deficient seismogenic environments and their presence is considered to be rare in the geological record. Here, we present field and experimental evidence that frictional melting can occur in hydrothermal fluid‐rich faults hosted in...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365670/ https://www.ncbi.nlm.nih.gov/pubmed/34434077 http://dx.doi.org/10.1029/2021GC009743 |
_version_ | 1783738754387673088 |
---|---|
author | Gomila, R. Fondriest, M. Jensen, E. Spagnuolo, E. Masoch, S. Mitchell, T. M. Magnarini, G. Bistacchi, A. Mittempergher, S. Faulkner, D. Cembrano, J. Di Toro, G. |
author_facet | Gomila, R. Fondriest, M. Jensen, E. Spagnuolo, E. Masoch, S. Mitchell, T. M. Magnarini, G. Bistacchi, A. Mittempergher, S. Faulkner, D. Cembrano, J. Di Toro, G. |
author_sort | Gomila, R. |
collection | PubMed |
description | Tectonic pseudotachylytes are thought to be unique to certain water‐deficient seismogenic environments and their presence is considered to be rare in the geological record. Here, we present field and experimental evidence that frictional melting can occur in hydrothermal fluid‐rich faults hosted in the continental crust. Pseudotachylytes were found in the >40 km‐long Bolfín Fault Zone of the Atacama Fault System, within two ca. 1 m‐thick (ultra)cataclastic strands hosted in a damage‐zone made of chlorite‐epidote‐rich hydrothermally altered tonalite. This alteration state indicates that hydrothermal fluids were active during the fault development. Pseudotachylytes, characterized by presenting amygdales, cut and are cut by chlorite‐, epidote‐ and calcite‐bearing veins. In turn, crosscutting relationship with the hydrothermal veins indicates pseudotachylytes were formed during this period of fluid activity. Rotary shear experiments conducted on bare surfaces of hydrothermally altered rocks at seismic slip velocities (3 m s(−1)) resulted in the production of vesiculated pseudotachylytes both at dry and water‐pressurized conditions, with melt lubrication as the primary mechanism for fault dynamic weakening. The presented evidence challenges the common hypothesis that pseudotachylytes are limited to fluid‐deficient environments, and gives insights into the ancient seismic activity of the system. Both field observations and experimental evidence, indicate that pseudotachylytes may easily be produced in hydrothermal environments, and could be a common co‐seismic fault product. Consequently, melt lubrication could be considered one of the most efficient seismic dynamic weakening mechanisms in crystalline basement rocks of the continental crust. |
format | Online Article Text |
id | pubmed-8365670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83656702021-08-23 Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) Gomila, R. Fondriest, M. Jensen, E. Spagnuolo, E. Masoch, S. Mitchell, T. M. Magnarini, G. Bistacchi, A. Mittempergher, S. Faulkner, D. Cembrano, J. Di Toro, G. Geochem Geophys Geosyst Research Article Tectonic pseudotachylytes are thought to be unique to certain water‐deficient seismogenic environments and their presence is considered to be rare in the geological record. Here, we present field and experimental evidence that frictional melting can occur in hydrothermal fluid‐rich faults hosted in the continental crust. Pseudotachylytes were found in the >40 km‐long Bolfín Fault Zone of the Atacama Fault System, within two ca. 1 m‐thick (ultra)cataclastic strands hosted in a damage‐zone made of chlorite‐epidote‐rich hydrothermally altered tonalite. This alteration state indicates that hydrothermal fluids were active during the fault development. Pseudotachylytes, characterized by presenting amygdales, cut and are cut by chlorite‐, epidote‐ and calcite‐bearing veins. In turn, crosscutting relationship with the hydrothermal veins indicates pseudotachylytes were formed during this period of fluid activity. Rotary shear experiments conducted on bare surfaces of hydrothermally altered rocks at seismic slip velocities (3 m s(−1)) resulted in the production of vesiculated pseudotachylytes both at dry and water‐pressurized conditions, with melt lubrication as the primary mechanism for fault dynamic weakening. The presented evidence challenges the common hypothesis that pseudotachylytes are limited to fluid‐deficient environments, and gives insights into the ancient seismic activity of the system. Both field observations and experimental evidence, indicate that pseudotachylytes may easily be produced in hydrothermal environments, and could be a common co‐seismic fault product. Consequently, melt lubrication could be considered one of the most efficient seismic dynamic weakening mechanisms in crystalline basement rocks of the continental crust. John Wiley and Sons Inc. 2021-07-12 2021-07 /pmc/articles/PMC8365670/ /pubmed/34434077 http://dx.doi.org/10.1029/2021GC009743 Text en © 2021. The Authors. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Article Gomila, R. Fondriest, M. Jensen, E. Spagnuolo, E. Masoch, S. Mitchell, T. M. Magnarini, G. Bistacchi, A. Mittempergher, S. Faulkner, D. Cembrano, J. Di Toro, G. Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) |
title | Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) |
title_full | Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) |
title_fullStr | Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) |
title_full_unstemmed | Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) |
title_short | Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile) |
title_sort | frictional melting in hydrothermal fluid‐rich faults: field and experimental evidence from the bolfín fault zone (chile) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365670/ https://www.ncbi.nlm.nih.gov/pubmed/34434077 http://dx.doi.org/10.1029/2021GC009743 |
work_keys_str_mv | AT gomilar frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT fondriestm frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT jensene frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT spagnuoloe frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT masochs frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT mitchelltm frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT magnarinig frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT bistacchia frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT mittemperghers frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT faulknerd frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT cembranoj frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile AT ditorog frictionalmeltinginhydrothermalfluidrichfaultsfieldandexperimentalevidencefromthebolfinfaultzonechile |