Cargando…
Combining data assimilation and machine learning to build data‐driven models for unknown long time dynamics—Applications in cardiovascular modeling
We propose a method to discover differential equations describing the long‐term dynamics of phenomena featuring a multiscale behavior in time, starting from measurements taken at the fast‐scale. Our methodology is based on a synergetic combination of data assimilation (DA), used to estimate the para...
Autores principales: | Regazzoni, Francesco, Chapelle, Dominique, Moireau, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365699/ https://www.ncbi.nlm.nih.gov/pubmed/33913623 http://dx.doi.org/10.1002/cnm.3471 |
Ejemplares similares
-
Strategic Use of Data Assimilation for Dynamic Data-Driven Simulation
por: Cho, Yubin, et al.
Publicado: (2020) -
Human cadaver brain infusion skull model for neurosurgical training
por: Olabe, Jon, et al.
Publicado: (2011) -
A climate-driven and field data-assimilated population dynamics model of sand flies
por: Erguler, Kamil, et al.
Publicado: (2019) -
Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning
por: Pagani, Stefano, et al.
Publicado: (2021) -
Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics
por: Chabiniok, Radomir, et al.
Publicado: (2016)