Cargando…
Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer
BACKGROUND: Pathological complete response (pCR) is considered a surrogate endpoint for favorable survival in breast cancer patients treated with neoadjuvant chemotherapy (NAC). Predictive biomarkers of treatment response are crucial for guiding treatment decisions. With the hypothesis that histolog...
Autores principales: | Li, Fengling, Yang, Yongquan, Wei, Yani, He, Ping, Chen, Jie, Zheng, Zhongxi, Bu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365907/ https://www.ncbi.nlm.nih.gov/pubmed/34399795 http://dx.doi.org/10.1186/s12967-021-03020-z |
Ejemplares similares
-
Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer
por: Li, Fengling, et al.
Publicado: (2022) -
Deep learning with biopsy whole slide images for pretreatment prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer:A multicenter study
por: Li, Bao, et al.
Publicado: (2022) -
Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method
por: Qu, Yu‐Hong, et al.
Publicado: (2020) -
Molecular Biomarkers Predict Pathological Complete Response of Neoadjuvant Chemotherapy in Breast Cancer Patients: Review
por: de Freitas, Ana Julia Aguiar, et al.
Publicado: (2021) -
Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
por: Joo, Sunghoon, et al.
Publicado: (2021)