Cargando…
Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation
Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motio...
Autores principales: | Song, Seungmoon, Kidziński, Łukasz, Peng, Xue Bin, Ong, Carmichael, Hicks, Jennifer, Levine, Sergey, Atkeson, Christopher G., Delp, Scott L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365920/ https://www.ncbi.nlm.nih.gov/pubmed/34399772 http://dx.doi.org/10.1186/s12984-021-00919-y |
Ejemplares similares
-
A neuromechanical computational model of spinal control of locomotion
por: Markin, Sergey N, et al.
Publicado: (2012) -
Evaluation of a Neuromechanical Walking Control Model Using Disturbance Experiments
por: Song, Seungmoon, et al.
Publicado: (2017) -
Neuromechanical Simulation
por: Edwards, Donald H.
Publicado: (2010) -
Automatic real-time gait event detection in children using deep neural networks
por: Kidziński, Łukasz, et al.
Publicado: (2019) -
Deep neural networks enable quantitative movement analysis using single-camera videos
por: Kidziński, Łukasz, et al.
Publicado: (2020)